Quantifying the Significance of the Magnetic Field from Large-Scale Cloud to Collapsing Core: Self-Similarity, Mass-to-Flux Ratio and Star Formation Efficiency
Language
en
Article de revue
This item was published in
The Astrophysical Journal. 2012, vol. 747, n° 1, p. 80
American Astronomical Society
English Abstract
Dust polarization observational results are analyzed for the high-mass star formation region W51 from the largest parent cloud ($\sim$ 2~pc, JCMT) to the large-scale envelope ($\sim$ 0.5~pc, BIMA) down to the collapsing ...Read more >
Dust polarization observational results are analyzed for the high-mass star formation region W51 from the largest parent cloud ($\sim$ 2~pc, JCMT) to the large-scale envelope ($\sim$ 0.5~pc, BIMA) down to the collapsing core e2 ($\sim$ 60~mpc, SMA). Magnetic field and dust emission gradient orientations reveal a correlation which becomes increasingly more tight with higher resolution. The previously developed polarization - intensity gradient method (Koch et al. 2012) is applied in order to quantify the magnetic field significance. This technique provides a way to estimate the local magnetic field force compared to gravity without the need of any mass or field strength measurements, solely making use of measured angles which reflect the geometrical imprint of the various forces. All three data sets clearly show regions with distinct features in the field-to-gravity force ratio. Azimuthally averaged radial profiles of this force ratio reveal a transition from a field dominance at larger distances to a gravity dominance closer to the emission peaks. Normalizing these profiles to a characteristic core scale points toward self-similarity. Furthermore, the polarization intensity-gradient method is linked to the mass-to-flux ratio, providing a new approach to estimate the latter one without mass and field strength inputs. A transition from a magnetically supercritical to a subcritical state as a function of distance from the emission peak is found for the e2 core. Finally, based on the measured radius-dependent field-to-gravity force ratio we derive a modified star formation efficiency with a diluted gravity force. Compared to a standard (free-fall) efficiency, the observed field is capable of reducing the efficiency down to 10\% or less.Read less <
Origin
Hal imported