Terrestrial Planet Formation at Home and Abroad
MORBIDELLI, Alessandro
Laboratoire de Cosmologie, Astrophysique Stellaire & Solaire, de Planétologie et de Mécanique des Fluides [CASSIOPEE]
See more >
Laboratoire de Cosmologie, Astrophysique Stellaire & Solaire, de Planétologie et de Mécanique des Fluides [CASSIOPEE]
MORBIDELLI, Alessandro
Laboratoire de Cosmologie, Astrophysique Stellaire & Solaire, de Planétologie et de Mécanique des Fluides [CASSIOPEE]
< Reduce
Laboratoire de Cosmologie, Astrophysique Stellaire & Solaire, de Planétologie et de Mécanique des Fluides [CASSIOPEE]
Language
en
Communication dans un congrès
This item was published in
Terrestrial planet formation at home and abroad Protostars and Planets 6, Heidelberg, Germany, July 2013., Terrestrial planet formation at home and abroad Protostars and Planets 6, Heidelberg, Germany, July 2013., Protostars and Planets 6, 2013, Heidelberg.
English Abstract
We review the state of the field of terrestrial planet formation with the goal of understanding the formation of the inner Solar System and low-mass exoplanets. We review the dynamics and timescales of accretion from ...Read more >
We review the state of the field of terrestrial planet formation with the goal of understanding the formation of the inner Solar System and low-mass exoplanets. We review the dynamics and timescales of accretion from planetesimals to planetary embryos and from embryos to terrestrial planets. We discuss radial mixing and water delivery, planetary spins and the importance of parameters regarding the disk and embryo properties. Next, we connect accretion models to exoplanets. We first explain why the observed hot Super Earths probably formed by in situ accretion or inward migration. We show how terrestrial planet formation is altered in systems with gas giants by the mechanisms of giant planet migration and dynamical instabilities. Standard models of terrestrial accretion fail to reproduce the inner Solar System. The "Grand Tack" model solves this problem using ideas first developed to explain the giant exoplanets. Finally, we discuss whether most terrestrial planet systems form in the same way as ours, and highlight the key ingredients missing in the current generation of simulations.Read less <
Origin
Hal imported