Fully dynamic approximate distance oracles for planar graphs via forbidden-set distance labels
GAVOILLE, Cyril
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Institut universitaire de France [IUF]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Institut universitaire de France [IUF]
GAVOILLE, Cyril
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Institut universitaire de France [IUF]
< Leer menos
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Institut universitaire de France [IUF]
Idioma
en
Communication dans un congrès
Este ítem está publicado en
44th Annual ACM Symposium on Theory of Computing (STOC), 44th Annual ACM Symposium on Theory of Computing (STOC), 44th Annual ACM Symposium on Theory of Computing (STOC), 2012-05, New-York. 2012-05p. 1199-1217
Resumen en inglés
This paper considers fully dynamic (1 + ε) distance oracles and (1 + ε) forbidden-set labeling schemes for pla- nar graphs. For a given n-vertex planar graph G with edge weights drawn from [1,M] and parameter ε > 0, our ...Leer más >
This paper considers fully dynamic (1 + ε) distance oracles and (1 + ε) forbidden-set labeling schemes for pla- nar graphs. For a given n-vertex planar graph G with edge weights drawn from [1,M] and parameter ε > 0, our forbidden-set labeling scheme uses labels of length λ = O(ε−1 log2 n log (nM ) * (ε−1 + log n)). Given the labels of two vertices s and t and of a set F of faulty vertices/edges, our scheme approximates the distance between s and t in G \ F with stretch (1 + ε), in O(|F|2λ) time. We then present a general method to transform (1 + ε) forbidden-set labeling schemas into a fully dynamic (1 + ε) distance oracle. Our fully dynamic (1 + ε) distance oracle is of size O(n log n * (ε−1 + log n)) and has O ̃(n1/2) query and update time, both the query and the update time are worst case. This improves on the best previously known (1 + ε) dynamic distance oracle for planar graphs, which has worst case query time O ̃(n2/3) and amortized update time of O ̃(n2/3). Our (1 + ε) forbidden-set labeling scheme can also be extended into a forbidden-set labeled routing scheme with stretch (1 + ε).< Leer menos
Palabras clave en inglés
dynamic data-structure
planar graphs
compact routing
Proyecto europeo
Experimental UpdateLess Evolutive Routing
Proyecto ANR
Calculabilité et complexité en distribué - ANR-11-BS02-0014
Orígen
Importado de HalCentros de investigación