The system will be going down for regular maintenance. Please save your work and logout.

Show simple item record

hal.structure.identifierMicrosoft Research Silicon Valley
dc.contributor.authorABRAHAM, Ittai
hal.structure.identifierDepartment of Computer Science and Applied Mathematics [Rehovot]
dc.contributor.authorCHECHIK, Shiri
hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
hal.structure.identifierAlgorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
hal.structure.identifierInstitut universitaire de France [IUF]
dc.contributor.authorGAVOILLE, Cyril
dc.contributor.editorACM
dc.date.accessioned2024-04-15T09:44:52Z
dc.date.available2024-04-15T09:44:52Z
dc.date.created2012
dc.date.issued2012-05
dc.date.conference2012-05
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/197878
dc.description.abstractEnThis paper considers fully dynamic (1 + ε) distance oracles and (1 + ε) forbidden-set labeling schemes for pla- nar graphs. For a given n-vertex planar graph G with edge weights drawn from [1,M] and parameter ε > 0, our forbidden-set labeling scheme uses labels of length λ = O(ε−1 log2 n log (nM ) * (ε−1 + log n)). Given the labels of two vertices s and t and of a set F of faulty vertices/edges, our scheme approximates the distance between s and t in G \ F with stretch (1 + ε), in O(|F|2λ) time. We then present a general method to transform (1 + ε) forbidden-set labeling schemas into a fully dynamic (1 + ε) distance oracle. Our fully dynamic (1 + ε) distance oracle is of size O(n log n * (ε−1 + log n)) and has O ̃(n1/2) query and update time, both the query and the update time are worst case. This improves on the best previously known (1 + ε) dynamic distance oracle for planar graphs, which has worst case query time O ̃(n2/3) and amortized update time of O ̃(n2/3). Our (1 + ε) forbidden-set labeling scheme can also be extended into a forbidden-set labeled routing scheme with stretch (1 + ε).
dc.description.sponsorshipCalculabilité et complexité en distribué - ANR-11-BS02-0014
dc.language.isoen
dc.source.title44th Annual ACM Symposium on Theory of Computing (STOC)
dc.subject.endynamic data-structure
dc.subject.enplanar graphs
dc.subject.encompact routing
dc.title.enFully dynamic approximate distance oracles for planar graphs via forbidden-set distance labels
dc.typeCommunication dans un congrès
dc.identifier.doi10.1145/2213977.2214084
dc.subject.halInformatique [cs]/Algorithme et structure de données [cs.DS]
dc.description.sponsorshipEuropeExperimental UpdateLess Evolutive Routing
bordeaux.page1199-1217
bordeaux.hal.laboratoriesLaboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.conference.title44th Annual ACM Symposium on Theory of Computing (STOC)
bordeaux.countryUS
bordeaux.title.proceeding44th Annual ACM Symposium on Theory of Computing (STOC)
bordeaux.conference.cityNew-York
bordeaux.peerReviewedoui
hal.identifierhal-00725839
hal.version1
hal.invitednon
hal.proceedingsoui
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00725839v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.btitle=44th%20Annual%20ACM%20Symposium%20on%20Theory%20of%20Computing%20(STOC)&rft.date=2012-05&rft.spage=1199-1217&rft.epage=1199-1217&rft.au=ABRAHAM,%20Ittai&CHECHIK,%20Shiri&GAVOILLE,%20Cyril&rft.genre=unknown


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record