Fully dynamic approximate distance oracles for planar graphs via forbidden-set distance labels
GAVOILLE, Cyril
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Institut universitaire de France [IUF]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Institut universitaire de France [IUF]
GAVOILLE, Cyril
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Institut universitaire de France [IUF]
< Réduire
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Institut universitaire de France [IUF]
Langue
en
Communication dans un congrès
Ce document a été publié dans
44th Annual ACM Symposium on Theory of Computing (STOC), 44th Annual ACM Symposium on Theory of Computing (STOC), 44th Annual ACM Symposium on Theory of Computing (STOC), 2012-05, New-York. 2012-05p. 1199-1217
Résumé en anglais
This paper considers fully dynamic (1 + ε) distance oracles and (1 + ε) forbidden-set labeling schemes for pla- nar graphs. For a given n-vertex planar graph G with edge weights drawn from [1,M] and parameter ε > 0, our ...Lire la suite >
This paper considers fully dynamic (1 + ε) distance oracles and (1 + ε) forbidden-set labeling schemes for pla- nar graphs. For a given n-vertex planar graph G with edge weights drawn from [1,M] and parameter ε > 0, our forbidden-set labeling scheme uses labels of length λ = O(ε−1 log2 n log (nM ) * (ε−1 + log n)). Given the labels of two vertices s and t and of a set F of faulty vertices/edges, our scheme approximates the distance between s and t in G \ F with stretch (1 + ε), in O(|F|2λ) time. We then present a general method to transform (1 + ε) forbidden-set labeling schemas into a fully dynamic (1 + ε) distance oracle. Our fully dynamic (1 + ε) distance oracle is of size O(n log n * (ε−1 + log n)) and has O ̃(n1/2) query and update time, both the query and the update time are worst case. This improves on the best previously known (1 + ε) dynamic distance oracle for planar graphs, which has worst case query time O ̃(n2/3) and amortized update time of O ̃(n2/3). Our (1 + ε) forbidden-set labeling scheme can also be extended into a forbidden-set labeled routing scheme with stretch (1 + ε).< Réduire
Mots clés en anglais
dynamic data-structure
planar graphs
compact routing
Projet Européen
Experimental UpdateLess Evolutive Routing
Project ANR
Calculabilité et complexité en distribué - ANR-11-BS02-0014
Origine
Importé de halUnités de recherche