Differential Puiseux theorem in generalized series fields of finite rank
Language
en
Article de revue
This item was published in
Annales de la Faculté des Sciences de Toulouse. Mathématiques. 2011, vol. 20, n° 2, p. 247-293
Université Paul Sabatier _ Cellule Mathdoc
English Abstract
We study differential equations $F(y,...,y^{(n)})=0$ where $F(Y_0,...,Y_n)$ is a formal series in $Y_0,...,Y_n$ with coefficients in some field of \emph{generalized power series} $\mathds{K}_r$ with finite rank $r\in\mathbb{N}^*$. ...Read more >
We study differential equations $F(y,...,y^{(n)})=0$ where $F(Y_0,...,Y_n)$ is a formal series in $Y_0,...,Y_n$ with coefficients in some field of \emph{generalized power series} $\mathds{K}_r$ with finite rank $r\in\mathbb{N}^*$. Our purpose is to understand the connection between the set of exponents of the coefficients of the equation $\textrm{Supp} F$ and the set $\textrm{Supp} y_0$ of exponents of the elements $y_0\in\mathds{K}_r$ that are solutions.Read less <
Origin
Hal imported