Differential Puiseux theorem in generalized series fields of finite rank
Idioma
en
Article de revue
Este ítem está publicado en
Annales de la Faculté des Sciences de Toulouse. Mathématiques. 2011, vol. 20, n° 2, p. 247-293
Université Paul Sabatier _ Cellule Mathdoc
Resumen en inglés
We study differential equations $F(y,...,y^{(n)})=0$ where $F(Y_0,...,Y_n)$ is a formal series in $Y_0,...,Y_n$ with coefficients in some field of \emph{generalized power series} $\mathds{K}_r$ with finite rank $r\in\mathbb{N}^*$. ...Leer más >
We study differential equations $F(y,...,y^{(n)})=0$ where $F(Y_0,...,Y_n)$ is a formal series in $Y_0,...,Y_n$ with coefficients in some field of \emph{generalized power series} $\mathds{K}_r$ with finite rank $r\in\mathbb{N}^*$. Our purpose is to understand the connection between the set of exponents of the coefficients of the equation $\textrm{Supp} F$ and the set $\textrm{Supp} y_0$ of exponents of the elements $y_0\in\mathds{K}_r$ that are solutions.< Leer menos
Orígen
Importado de HalCentros de investigación