Differential Puiseux theorem in generalized series fields of finite rank
Langue
en
Article de revue
Ce document a été publié dans
Annales de la Faculté des Sciences de Toulouse. Mathématiques. 2011, vol. 20, n° 2, p. 247-293
Université Paul Sabatier _ Cellule Mathdoc
Résumé en anglais
We study differential equations $F(y,...,y^{(n)})=0$ where $F(Y_0,...,Y_n)$ is a formal series in $Y_0,...,Y_n$ with coefficients in some field of \emph{generalized power series} $\mathds{K}_r$ with finite rank $r\in\mathbb{N}^*$. ...Lire la suite >
We study differential equations $F(y,...,y^{(n)})=0$ where $F(Y_0,...,Y_n)$ is a formal series in $Y_0,...,Y_n$ with coefficients in some field of \emph{generalized power series} $\mathds{K}_r$ with finite rank $r\in\mathbb{N}^*$. Our purpose is to understand the connection between the set of exponents of the coefficients of the equation $\textrm{Supp} F$ and the set $\textrm{Supp} y_0$ of exponents of the elements $y_0\in\mathds{K}_r$ that are solutions.< Réduire
Origine
Importé de halUnités de recherche