The atmospheric chemistry of the warm Neptune GJ 3470b: influence of metallicity and temperature on the CH4/CO ratio
Idioma
en
Article de revue
Este ítem está publicado en
Astronomy and Astrophysics - A&A. 2014, vol. 562, p. id.A51
EDP Sciences
Resumen en inglés
Current observation techniques are able to probe the atmosphere of some giant exoplanets and get some clues about their atmospheric composition. However, the chemical compositions derived from observations are not fully ...Leer más >
Current observation techniques are able to probe the atmosphere of some giant exoplanets and get some clues about their atmospheric composition. However, the chemical compositions derived from observations are not fully understood, as for instance in the case of the CH4/CO abundance ratio, which is often inferred different from what has been predicted by chemical models. Recently, the warm Neptune GJ3470b has been discovered and because of its close distance from us and high transit depth, it is a very promising candidate for follow up characterisation of its atmosphere. We study the atmospheric composition of GJ3470b in order to compare with the current observations of this planet, to prepare the future ones, but also as a typical case study to understand the chemical composition of warm (sub-)Neptunes. The metallicity of such atmospheres is totally uncertain, and vary probably to values up to 100x solar. We explore the space of unknown parameters to predict the range of possible atmospheric compositions. Within the parameter space explored we find that in most cases methane is the major carbon-bearing species. We however find that in some cases, typically for high metallicities with a sufficiently high temperature the CH4/CO abundance ratio can become lower than unity, as suggested by some multiwavelength photometric observations of other warm (sub-)Neptunes, such as GJ1214b and GJ436b. As for the emission spectrum of GJ3470b, brightness temperatures at infrared wavelengths may vary between 400 and 800K depending on the thermal profile and metallicity. Combined with a hot temperature profile, a substantial enrichment in heavy elements by a factor of 100 with respect to the solar composition can shift the carbon balance in favour of carbon monoxide at the expense of CH4. Nevertheless, current observations of this planet do not allow yet to determine which model is more accurate.< Leer menos
Orígen
Importado de HalCentros de investigación