Predicting HCN, HCO+, multi-transition CO, and dust emission of star-forming galaxies
Idioma
en
Article de revue
Este ítem está publicado en
Astronomy and Astrophysics - A&A. 2017, vol. 602, p. A51
EDP Sciences
Resumen en inglés
High-z star-forming galaxies have significantly higher gas fractions and star-formation efficiencies per molecular gas mass than local star-forming galaxies. In this work, we take a closer look at the gas content or fraction ...Leer más >
High-z star-forming galaxies have significantly higher gas fractions and star-formation efficiencies per molecular gas mass than local star-forming galaxies. In this work, we take a closer look at the gas content or fraction and the associated star-formation rate in main sequence and starburst galaxies at z = 0 and z ~ 1–2 by applying an analytical model of galactic clumpy gas disks to samples of local spiral galaxies, ULIRGs, submillimeter (smm), and high-z star-forming galaxies. The model simultaneously calculates the total gas mass, Hi/H2 mass, the gas velocity dispersion, IR luminosity, IR spectral energy distribution, CO spectral line energy distribution (SLED), HCN(1–0) and HCO+(1–0) emission of a galaxy given its size, integrated star formation rate, stellar mass radial profile, rotation curve, and Toomre Q parameter. The model reproduces the observed CO luminosities and SLEDs of all sample galaxies within the model uncertainties (~0.3 dex). Whereas the CO emission is robust against the variation of model parameters, the HCN and HCO+ emissions are sensitive to the chemistry of the interstellar medium. The CO and HCN mass-to-light conversion factors, including CO-dark H2, are given and compared to the values found in the literature. All model conversion factors have uncertainties of a factor of two. Both the HCN and HCO+ emissions trace the dense molecular gas to a factor of approximately two for the local spiral galaxies, ULIRGs and smm-galaxies. Approximately 80% of the molecular line emission of compact starburst galaxies originates in non-self-gravitating gas clouds. The effect of HCN infrared pumping is small but measurable (10–20%). The gas velocity dispersion varies significantly with the Toomre Q parameter. The Q = 1.5 model yields high-velocity dispersions (vdisp ≫ 10 km s-1) consistent with available observations of high-z star-forming galaxies and ULIRGs. However, we note that these high-velocity dispersions are not mandatory for starburst galaxies. The integrated Kennicutt-Schmidt law has a slope of approximately 1 for the local spirals, ULIRGs, and smm-galaxies, whereas the slope is 1.7 for high-z star-forming galaxies. The model shows Kennicutt-Schmidt laws with respect to the molecular gas surface density with slopes of approximately 1.5 for local spiral galaxies, high-z star-forming galaxies. The relation steepens for compact starburst galaxies. The model star-formation rate per unit area is, as observed, proportional to the molecular gas surface density divided by the dynamical timescale. Our relatively simple analytic model together with the recipes for the molecular line emission appears to capture the essential physics of galactic clumpy gas disks.< Leer menos
Palabras clave en inglés
Astrophysics - Astrophysics of Galaxies
galaxies: ISM
Orígen
Importado de HalCentros de investigación