Wall effects on the transportation of a cylindrical particle in power-law fluids
Language
en
Article de revue
This item was published in
Journal of Non-Newtonian Fluid Mechanics. 2011-10, vol. 166, n° 19-20, p. 1173-1182
Elsevier
English Abstract
The present work deals with the numerical calculation of the Stokes-type drag undergone by a cylindrical particle perpendicularly to its axis in a power-law fluid. In unbounded medium, as all data are not available yet, ...Read more >
The present work deals with the numerical calculation of the Stokes-type drag undergone by a cylindrical particle perpendicularly to its axis in a power-law fluid. In unbounded medium, as all data are not available yet, we provide a numerical solution for the pseudoplastic fluid. Indeed, the Stokes-type solution exists because the Stokes' paradox does not take place anymore. We show a high sensitivity of the solution to the confinement, and the appearance of the inertia in the proximity of the Newtonian case, where the Stokes' paradox takes place. For unbounded medium, avoiding these traps, we show that the drag is zero for Newtonian and dilatant fluids. But in the bounded one, the Stokes-type regime is recovered for Newtonian and dilatant fluids. We give also a physical explanation of this effect which is due to the reduction of the hydrodynamic screen length, for pseudoplastic fluids. Once the solution of the unbounded medium has been obtained, we give a solution for the confined medium numerically and asymptotically. We also highlight the consequence of the confinement and the backflow on the settling velocity of a fiber perpendicularly to its axis in a slit. Using the dynamic mesh technique, we give the actual transportation velocity in a power-law "Poiseuille flow", versus the confinement parameter and the fluidity index, induced by the hydrodynamic interactions.Read less <
English Keywords
Power-law fluid
Cylinder
Stokes-type force
Hydrodynamic interactions
Non-Newtonian fluids
Stokes' paradox
Origin
Hal imported