Global warming and acid atmospheric deposition impacts on carbonate dissolution and CO2 fluxes in French karst hydrosystems: evidence from hydrochemical monitoring in recent decades
BINET, Stéphane
Service National d'Observation sur le KARST [SNO Karst]
Institut des Sciences de la Terre d'Orléans - UMR7327 [ISTO]
Biogéosystèmes Continentaux - UMR7327
Service National d'Observation sur le KARST [SNO Karst]
Institut des Sciences de la Terre d'Orléans - UMR7327 [ISTO]
Biogéosystèmes Continentaux - UMR7327
PROBST, J.L.
Laboratoire Ecologie Fonctionnelle et Environnement [LEFE]
Service National d'Observation sur le KARST [SNO Karst]
Laboratoire Ecologie Fonctionnelle et Environnement [LEFE]
Service National d'Observation sur le KARST [SNO Karst]
BATIOT-GUILHE, Christelle
Hydrosciences Montpellier [HSM]
Service National d'Observation sur le KARST [SNO Karst]
See more >
Hydrosciences Montpellier [HSM]
Service National d'Observation sur le KARST [SNO Karst]
BINET, Stéphane
Service National d'Observation sur le KARST [SNO Karst]
Institut des Sciences de la Terre d'Orléans - UMR7327 [ISTO]
Biogéosystèmes Continentaux - UMR7327
Service National d'Observation sur le KARST [SNO Karst]
Institut des Sciences de la Terre d'Orléans - UMR7327 [ISTO]
Biogéosystèmes Continentaux - UMR7327
PROBST, J.L.
Laboratoire Ecologie Fonctionnelle et Environnement [LEFE]
Service National d'Observation sur le KARST [SNO Karst]
Laboratoire Ecologie Fonctionnelle et Environnement [LEFE]
Service National d'Observation sur le KARST [SNO Karst]
BATIOT-GUILHE, Christelle
Hydrosciences Montpellier [HSM]
Service National d'Observation sur le KARST [SNO Karst]
Hydrosciences Montpellier [HSM]
Service National d'Observation sur le KARST [SNO Karst]
SEIDEL, J.L.
Hydrosciences Montpellier [HSM]
Service National d'Observation sur le KARST [SNO Karst]
Hydrosciences Montpellier [HSM]
Service National d'Observation sur le KARST [SNO Karst]
EMBLANCH, C.
Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes [EMMAH]
Service National d'Observation sur le KARST [SNO Karst]
Avignon Université [AU]
Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes [EMMAH]
Service National d'Observation sur le KARST [SNO Karst]
Avignon Université [AU]
CHARLIER, Jean-Baptiste
Service National d'Observation sur le KARST [SNO Karst]
Bureau de Recherches Géologiques et Minières [BRGM]
Service National d'Observation sur le KARST [SNO Karst]
Bureau de Recherches Géologiques et Minières [BRGM]
BAKALOWICZ, M.
Hydrosciences Montpellier [HSM]
Service National d'Observation sur le KARST [SNO Karst]
Hydrosciences Montpellier [HSM]
Service National d'Observation sur le KARST [SNO Karst]
PROBST, Anne
Laboratoire Ecologie Fonctionnelle et Environnement [LEFE]
Service National d'Observation sur le KARST [SNO Karst]
< Reduce
Laboratoire Ecologie Fonctionnelle et Environnement [LEFE]
Service National d'Observation sur le KARST [SNO Karst]
Language
en
Article de revue
This item was published in
Geochimica et Cosmochimica Acta. 2020, vol. 270, p. 184-200
Elsevier
English Abstract
The long-term change in surface water chemistry over time in remote areas is usually related to global change, including several processes such as global warming and acid atmospheric pollution. These cumulative factors ...Read more >
The long-term change in surface water chemistry over time in remote areas is usually related to global change, including several processes such as global warming and acid atmospheric pollution. These cumulative factors limit the quantitative interpretation of the global warming effect on surface water acidification in relation to the atmospheric CO2 sink. To quantitatively estimate the impact of global warming on the atmospheric/soil CO2 uptake by carbonate weathering, the approach proposed here involves discriminating the proportion of [Ca + Mg] in waters resulting from soil carbonic acid dissolution (equal to the amount of CO2 uptake from soil/atmosphere) from the proportion resulting from strong acid pollution. This approach was applied to 5 karst hydrosystems located in France, far from local pollution sources and with several decades of hydrochemical monitoring.[Ca + Mg] from acid deposition represented between 16 and 25% of the total [Ca + Mg] concentration and the flux was positively correlated with the atmospheric deposition flux. This [Ca + Mg] increase is associated with increasing [Mg] and was found to be driven by the acid pollution inputs. Equilibrating water with calcite in presence of carbonic acid will release [Ca + Mg] into solution. The input of strong acids from atmospheric pollution contributes more to magnesian calcite dissolution because its solubility is lower than that of calcite.Since the 1980s, the decrease in [Ca + Mg] production due to the decrease in acid atmospheric deposition has minimized the increase in [Ca + Mg] linked to CO2 partial pressure (pCO2) increasing with global warming. It was found that [Ca + Mg] from H2CO3 dissolution did not decrease with an increase in air temperature, as suggested by carbonate solubility. The annual fluxes of Ca + Mg from H2CO3 dissolution, calculated for an average flow, showed a positive gradient with air temperature, of about 0.061 mol m2 yr−1 °C−1 (±0.006). In low rainfall areas, the pCO2 increase with air temperature was stronger than in rainy areas. For an average specific discharge of 300 L m−2 yr−1, global warming is estimated to increase the CO2 uptake flux by about 204 micromol L−1 °C−1 (5.7% of the observed flux).Read less <
English Keywords
Carbonate
Weathering
pCO2
Carbon dioxide
Acid Rain:Global warming Karst
Origin
Hal imported