Fluid-Structure Interactions in Discrete Mechanics
CALTAGIRONE, Jean-Paul
Université de Bordeaux et Institut Polytechnique de Bordeaux [IPB]
Institut de Mécanique et d'Ingénierie [I2M]
Université de Bordeaux et Institut Polytechnique de Bordeaux [IPB]
Institut de Mécanique et d'Ingénierie [I2M]
ANGOT, Philippe
Institut de Mathématiques de Marseille [I2M]
Aix-Marseille Université - Faculté des Sciences [AMU SCI]
Institut de Mathématiques de Marseille [I2M]
Aix-Marseille Université - Faculté des Sciences [AMU SCI]
CALTAGIRONE, Jean-Paul
Université de Bordeaux et Institut Polytechnique de Bordeaux [IPB]
Institut de Mécanique et d'Ingénierie [I2M]
Université de Bordeaux et Institut Polytechnique de Bordeaux [IPB]
Institut de Mécanique et d'Ingénierie [I2M]
ANGOT, Philippe
Institut de Mathématiques de Marseille [I2M]
Aix-Marseille Université - Faculté des Sciences [AMU SCI]
< Réduire
Institut de Mathématiques de Marseille [I2M]
Aix-Marseille Université - Faculté des Sciences [AMU SCI]
Langue
en
Chapitre d'ouvrage
Ce document a été publié dans
Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), Proceedings of the TI 2018 Conference, 2018-06, Les Trois îlets, Martinique. 2021-02, vol. 149, p. 3--13
Springer International Publishing
Résumé en anglais
The primary objective of discrete mechanics is to unify various laws from different areas of physics, such as fluid mechanics and solid mechanics. The same objective was also pursued by continuum mechanics, but the latter ...Lire la suite >
The primary objective of discrete mechanics is to unify various laws from different areas of physics, such as fluid mechanics and solid mechanics. The same objective was also pursued by continuum mechanics, but the latter has not been entirely successful in accomplishing it. The Galilean invariance and the principle of equivalence make it possible to rewrite the law of dynamics as an equality between accelerations, the one undergone by the medium and the external accelerations applied to it. The derivation of the equation of discrete motion leads to writing the acceleration as a Hodge-Helmholtz decomposition, i.e. the sum of a gradient of a scalar potential and the rotational of a vector potential. By choosing the acceleration as being a primary variable, we can express the velocity and the displacement simply as quantities that accumulate over time. Potentials represent energies per unit mass and are also stored over time. The resulting formulation is able to describe the motion and dynamics of complex media, that can be both fluid and solid, under large deformations and large displacements. Two examples of fluid-structure coupling, an analytical solution and a numerical solution used for a benchmark, are presented here. They show the ability of the model to reproduce the behavior of interacting fluid and solid media.< Réduire
Mots clés en anglais
Fluid-structure interaction
Discrete Mechanics
Origine
Importé de halUnités de recherche