Afficher la notice abrégée

hal.structure.identifierUniversité de Bordeaux et Institut Polytechnique de Bordeaux [IPB]
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorCALTAGIRONE, Jean-Paul
hal.structure.identifierInstitut de Mathématiques de Marseille [I2M]
hal.structure.identifierAix-Marseille Université - Faculté des Sciences [AMU SCI]
dc.contributor.authorANGOT, Philippe
dc.contributor.editorM. Deville et al.
dc.date.accessioned2021-05-14T09:32:46Z
dc.date.available2021-05-14T09:32:46Z
dc.date.created2018-06
dc.date.issued2021-02
dc.date.conference2018-06
dc.identifier.isbn978-3-030-65820-5, 978-3-030-65819-9
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/75990
dc.description.abstractEnThe primary objective of discrete mechanics is to unify various laws from different areas of physics, such as fluid mechanics and solid mechanics. The same objective was also pursued by continuum mechanics, but the latter has not been entirely successful in accomplishing it. The Galilean invariance and the principle of equivalence make it possible to rewrite the law of dynamics as an equality between accelerations, the one undergone by the medium and the external accelerations applied to it. The derivation of the equation of discrete motion leads to writing the acceleration as a Hodge-Helmholtz decomposition, i.e. the sum of a gradient of a scalar potential and the rotational of a vector potential. By choosing the acceleration as being a primary variable, we can express the velocity and the displacement simply as quantities that accumulate over time. Potentials represent energies per unit mass and are also stored over time. The resulting formulation is able to describe the motion and dynamics of complex media, that can be both fluid and solid, under large deformations and large displacements. Two examples of fluid-structure coupling, an analytical solution and a numerical solution used for a benchmark, are presented here. They show the ability of the model to reproduce the behavior of interacting fluid and solid media.
dc.language.isoen
dc.publisherSpringer International Publishing
dc.source.titleNotes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM)
dc.subject.enFluid-structure interaction
dc.subject.enDiscrete Mechanics
dc.title.enFluid-Structure Interactions in Discrete Mechanics
dc.typeChapitre d'ouvrage
dc.identifier.doi10.1007/978-3-030-65820-5_1
dc.subject.halMathématiques [math]/Analyse numérique [math.NA]
dc.subject.halPhysique [physics]/Mécanique [physics]/Mécanique des fluides [physics.class-ph]
dc.subject.halInformatique [cs]/Modélisation et simulation
dc.subject.halPhysique [physics]/Mécanique [physics]/Mécanique des solides [physics.class-ph]
dc.subject.halPhysique [physics]/Mécanique [physics]/Mécanique des structures [physics.class-ph]
bordeaux.page3--13
bordeaux.volume149
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.countryFR
bordeaux.title.proceedingProceedings of the TI 2018 Conference
bordeaux.conference.cityLes Trois îlets, Martinique
hal.identifierhal-02970449
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02970449v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.btitle=Notes%20on%20Numerical%20Fluid%20Mechanics%20and%20Multidisciplinary%20Design%20(NNFM)&rft.date=2021-02&rft.volume=149&rft.spage=3--13&rft.epage=3--13&rft.au=CALTAGIRONE,%20Jean-Paul&ANGOT,%20Philippe&rft.isbn=978-3-030-65820-5,%20978-3-030-65819-9&rft.genre=unknown


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée