Coupling experimental and numerical modeling for studying mixing thermo-hydrodynamic phenomena in a microfluidic reactor working under pressure
ERRIGUIBLE, Arnaud
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Institut de Mécanique et d'Ingénierie [I2M]
See more >
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Institut de Mécanique et d'Ingénierie [I2M]
ERRIGUIBLE, Arnaud
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Institut de Mécanique et d'Ingénierie [I2M]
< Reduce
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Institut de Mécanique et d'Ingénierie [I2M]
Language
fr
Communication dans un congrès avec actes
This item was published in
Colloque Annuel du GDR MFA 2799 – Marseille, France, 2020-10-20, Marseille. p. 2 pages
English Abstract
In the frame of the SCWO insert development aiming at studying cold combustion process in supercritical water (T < 600°C, p < 300 bar) for the recycling and valorization of wastes for long term exploration missions, we ...Read more >
In the frame of the SCWO insert development aiming at studying cold combustion process in supercritical water (T < 600°C, p < 300 bar) for the recycling and valorization of wastes for long term exploration missions, we focus in here on mixing phenomena occurring within microreactors working in realistic pressure conditions (100 bar). We have considered model fluid mixtures (CO2-water diphasic and CO2-ethanol monophasic), which are representative of the future thermo-hydrodynamic properties, which will be used in SCWO with supercritical water. We have first identified new jetting mode for coflow injection, mostly driven by inertia. Then, we have determined by numerical simulation the mixing time associated with coflowing fluids inside microchannels for a monophasic system (CO2 – ethanol) at both laminar and turbulent conditions.Read less <
Origin
Hal imported