Régularité maximale LP du problème de Cauchy non-autonome et théorie spectrale des opérateurs de Schrodinger sur les variétés riemanniennes
Thèses de doctorat
Date de soutenance
2005-12-14Résumé
Cette thèse se compose de deux parties principales. La première a pour objet la régularité maximale des équations d’évolution. Plus précisemment, étant donnée une famille d’opérateurs dépendant du temps, on s’intéresse à ...Lire la suite >
Cette thèse se compose de deux parties principales. La première a pour objet la régularité maximale des équations d’évolution. Plus précisemment, étant donnée une famille d’opérateurs dépendant du temps, on s’intéresse à l’existence et l’unicité d’une solution au problème de Cauchy non-autonome associé. Sous l’hypothèse de continuité relative, on montre que la régularité maximale de la famille se ramène à la régularité de chaque opérateur. Nous obtenons des résultats de même nature pour le problème du second ordre. Dans la deuxième partie, deux problèmes de théorie spectrale des opérateurs de Schrodinger sur les variétés sont abordés. Tout d’abord, on obtient une minoration du bas du spectre essentiel au moyen de quantités liées au potentiel. Ce résultat permet notamment d’obtenir des critères de compacité de la résolvante. Le dernier chapitre traîte d’estimation du type Cwikel-Lieb-Rozenblum du nombre de valeurs propres qui apparaissent sous le spectre essentiel. La majoration obtenue fait directement intervenir le noyau de la chaleur du Laplacien sur la variété.< Réduire
Résumé en anglais
This thesis is divided into two main parts. The first one is devoted to the maximal regularity of evolution equations. More precisely, given a family of operators, we are interested in the existence and the unicity of a ...Lire la suite >
This thesis is divided into two main parts. The first one is devoted to the maximal regularity of evolution equations. More precisely, given a family of operators, we are interested in the existence and the unicity of a solution to the non-autonomous Cauchy problem. Under a relative continuity hypothesis, we show that the maximal regularity of the family is related to the regularity of each operator. Analogous results are obtained for the second order. In the second part, two problems of spectral theory of Schrodinger operators on manifolds are approached. First of all, we obtain a lower bound for the bottom of the essential spectrum by quantities depending on the potential. We deduce from this result some criterions for the compacity of the resolvant. The last chapter deals with Cwikel-Lieb-Rozenblum type estimate of the number of eigenvalues lying under the essential spectrum. The upper bound that we obtain is directly related to the heat kernel of the Laplacian on the manifold.< Réduire
Mots clés
Mathématiques Pures
Régularité maximale
problème de Cauchy non-autonome
opérateurs de Schrödinger
spectre essentiel
estimation Cwikel-Lieb-Rozenblum