Post compression d'impulsions intenses ultra-brèves et mise en forme spatiale pour la génération d'impulsions attosecondes intenses
Langue
fr
Thèses de doctorat
Date de soutenance
2011-10-28Spécialité
Lasers, matière et nanosciences
École doctorale
École doctorale des sciences physiques et de l’ingénieur (Talence, Gironde)Résumé
La génération d'harmoniques d'ordre élevé en milieu gazeux est un phénomène habituellement décrit par un modèle à trois étapes : sous l'effet d'un champ laser intense, un atome (ou une molécule) est ionisé par effet tunnel. ...Lire la suite >
La génération d'harmoniques d'ordre élevé en milieu gazeux est un phénomène habituellement décrit par un modèle à trois étapes : sous l'effet d'un champ laser intense, un atome (ou une molécule) est ionisé par effet tunnel. L'électron éjecté est accéléré dans le champ laser, puis il se recombine sur son ion parent en émettant un photon XUV. Ce rayonnement XUV, émis sous la forme d'impulsions attosecondes (1 as = 10-18 s), est un outil idéal pour sonder la structure électronique des atomes ou des molécules, avec une résolution temporelle de l'ordre de l'attoseconde. Néanmoins, l'intensité de ce rayonnement n'est en général pas suffisante pour induire des effets non-linéaires (transitions à deux photons).Au cours des travaux réalisés pendant cette thèse, nous avons développé une source harmonique capable de produire un rayonnement XUV intense qui doit permettre d'accéder à la physique non-linéaire dans cette gamme de longueur d'onde. Pour parvenir à ces résultats, un travail important sur les impulsions infrarouges génératrices a été nécessaire, aussi bien dans le domaine spatial que dans le domaine temporel. Une technique de mise en forme spatiale de faisceaux laser intenses a donc été développée, ainsi qu'une technique de post compression adaptée aux impulsions laser intenses. Ce travail de thèse se divise donc en trois étapes : - Le développement de la source harmonique haute énergie et des diagnostics associés. Cette source est basée sur l'utilisation d'une chaîne laser Titane-Saphir qui délivre des impulsions de 150 mJ pour des durées de 40 fs à une cadence de 10 Hz. De bonnes conditions d'optimisation ont été obtenues, donnant lieu à des impulsions XUV dont l'énergie est de l'ordre du µJ lors de la génération dans l'argon.- Le développement d'une technique de mise en forme spatiale adaptée aux faisceaux laser intenses et à la génération d'harmoniques. Le dispositif est basé sur une optique en réflexion et sur les interférences à deux faisceaux. Il permet de produire, dans la région focale, des faisceaux dont le profil d'intensité est radialement constant (faisceaux flat top) et ainsi d'apporter un contrôle supplémentaire sur la génération d'harmoniques d'ordre élevé.- Le développement d'une technique de post compression en propagation guidée basée sur l'élargissement spectral induit par ionisation. Cette technique est adaptée pour des impulsions intenses (3.5 TW) et permet de produire des impulsions de puissance crête supérieure au Térawatt dans le domaine sub-10 fs. Cette technique fournit donc une source unique pour la génération d'harmoniques d'ordre élevé.Ces deux approches ont été testées et validées pour la génération d'harmoniques d'ordre élevé, et les résultats obtenus ouvrent d'intéressantes perspectives telles que la génération d'impulsions attosecondes isolées de haute énergie (> 100 nJ).< Réduire
Résumé en anglais
The generation of high order harmonics in a gaseous medium is a phenomenon conveniently described by a three steps model : subject to a strong laser field irradiation, an atom (or molecule) can undergo a tunneling ionization. ...Lire la suite >
The generation of high order harmonics in a gaseous medium is a phenomenon conveniently described by a three steps model : subject to a strong laser field irradiation, an atom (or molecule) can undergo a tunneling ionization. The ejected electron is accelerated in the laser field and recombine on its parent ion leading to the emission of an XUV photon. The XUV radiation can be emitted as attosecond pulses (1 as = 10-18 s), and it is then an ideal tool to probe the electronic structure of atoms or molecules which require the highest time resolution. However, the intensity of this radiation is usually not sufficient to induce non-linear processes (two-photon transitions).In the frame of this work, we have developed a harmonic source capable of producing an intense XUV radiation to access non-linear physics in this wavelength domain.To achieve these results, significant work on the infrared generating pulses was necessary, both in the spatial and temporal domain. We have developed a technique for spatial shaping of intense laser beams, and a post compression technique fitted to high energy pulses.This thesis is therefore divided into three parts:- The development of an high energy harmonic source and related diagnostics. We use a Ti: sapphire laser system for this source which delivers 40-fs pulses up to an energy of 150 mJ at 10 Hz repetition rate. Good optimization conditions were obtained, leading to XUV pulse energies of the order of μJ in the case of generation in argon.- The development of a spatial shaping technique adapted to intense laser beams and to harmonic generation. The device is based on reflection optics and the interferences of two beams. It can produce, in the focal region, beams with a radially constant intensity over a large volume (flat top beams) and thus provide additional control of the harmonics generating process.- The development of a post compression technique in guided geometry based on the ionization induced spectral broadening. This technique is suitable for intense pulses (3.5 TW) and produces pulses above the terawatt level in the 10-fs range. This technique therefore provides a unique source for harmonic generation.These two approaches have been tested and validated for high order harmonics generation, and the results open interesting perspectives such as the generation of isolated attosecond pulses of high energy (> 100 nJ).< Réduire
Mots clés
Interaction laser matière
Optique non-linéaire
Génération d'harmoniques d'ordre élevé
Impulsion attoseconde
Physique non-linéaire XUV
Faisceau laser intense
Mise en forme spatiale
Post compression
Propagation guidée
Élargissement spectral par ionisation
Impulsion intense ultra-brève
Mots clés en anglais
Laser-matter interaction
Non-linear optics
High order harmonics generation
Attosecond pulse
XUV non-linear physics
Intense laser beam
Spatial shaping
Post compression
Ionization induced spectral broadening
Intense ultra-short pulse
Origine
Importé de STARUnités de recherche