Sin título
BONFAND, M.
Departments of Astronomy and Chemistry, University of Virginia, Charlottesville, VA 22904, USA
Leer más >
Departments of Astronomy and Chemistry, University of Virginia, Charlottesville, VA 22904, USA
BONFAND, M.
Departments of Astronomy and Chemistry, University of Virginia, Charlottesville, VA 22904, USA
Departments of Astronomy and Chemistry, University of Virginia, Charlottesville, VA 22904, USA
GALVÁN-MADRID, R.
Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Morelia, Michoacán 58089, México
Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Morelia, Michoacán 58089, México
STUTZ, A.
Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
DI FRANCESCO, J.
Herzberg Astronomy and Astrophysics Research Centre, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 Canada
Herzberg Astronomy and Astrophysics Research Centre, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 Canada
FERNÁNDEZ-LÓPEZ, M.
Instituto Argentino de Radioastronomía (CCT-La Plata, CONICET; CICPBA), C.C. No. 5, 1894, Villa Elisa, Buenos Aires, Argentina
Instituto Argentino de Radioastronomía (CCT-La Plata, CONICET; CICPBA), C.C. No. 5, 1894, Villa Elisa, Buenos Aires, Argentina
LIU, H-L.
Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
SANHUEZA, P.
National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
ÁLVAREZ-GUTIÉRREZ, R.
Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
OLGUIN, F.
Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
NONY, T.
Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Morelia, Michoacán 58089, México
Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Morelia, Michoacán 58089, México
CHEN, H.-R.
Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
TOWNER, A.
University of Arizona Department of Astronomy and Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721, USA
< Leer menos
University of Arizona Department of Astronomy and Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721, USA
Idioma
en
Article de revue
Este ítem está publicado en
Astronomy and Astrophysics - A&A. 2024-07-09, vol. 687, p. A163
EDP Sciences
Resumen en inglés
Context. The star formation process leads to an increased chemical complexity in the interstellar medium. Sites associated with high-mass star and cluster formation exhibit a so-called hot core phase, characterized by high ...Leer más >
Context. The star formation process leads to an increased chemical complexity in the interstellar medium. Sites associated with high-mass star and cluster formation exhibit a so-called hot core phase, characterized by high temperatures and column densities of complex organic molecules. Aims. We aim to systematically search for and identify a sample of hot cores toward the 15 Galactic protoclusters of the ALMA-IMF Large Program and investigate their statistical properties. Methods. We built a comprehensive census of hot core candidates toward the ALMA-IMF protoclusters based on the detection of two CH 3 OCHO emission lines at 216.1 GHz. We used the source extraction algorithm GExt2D to identify peaks of methyl formate (CH 3 OCHO) emission, a complex species commonly observed toward sites of star formation. We performed a cross-matching with the catalog of thermal dust continuum sources from the ALMA-IMF 1.3 mm continuum data to infer their physical properties. Results. We built a catalog of 76 hot core candidates with masses ranging from ~0.2 M ⊙ to ~80 M ⊙ , of which 56 are new detections. A large majority of these objects, identified from methyl formate emission, are compact and rather circular, with deconvolved full width at half maximum (FWHM) sizes of ~2300 au on average. The central sources of two target fields show more extended, but still rather circular, methyl formate emission with deconvolved FWHM sizes of ~6700 au and 13 400 au. About 30% of our sample of methyl formate sources have core masses above 8 M ⊙ and range in size from ~1000 au to 13 400 au, which is in line with measurements of archetypical hot cores. The origin of the CH 3 OCHO emission toward the lower-mass cores may be explained as a mixture of contributions from shocks or may correspond to objects in a more evolved state (i.e., beyond the hot core stage). We find that the fraction of hot core candidates increases with the core mass, suggesting that the brightest dust cores are all in the hot core phase. Conclusions. Our results suggest that most of these compact methyl formate sources are readily explained by simple symmetric models, while collective effects from radiative heating and shocks from compact protoclusters are needed to explain the observed extended CH 3 OCHO emission. The large fraction of hot core candidates toward the most massive cores suggests that they rapidly enter the hot core phase and that feedback effects from the forming protostar(s) impact their environment on short timescales.< Leer menos
Orígen
Importado de HalCentros de investigación