On the numerical approximation of first order Hamilton Jacobi equations
ABGRALL, Remi
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
Laboratoire de Mathématiques Appliquées de Bordeaux [MAB]
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
Laboratoire de Mathématiques Appliquées de Bordeaux [MAB]
ABGRALL, Remi
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
Laboratoire de Mathématiques Appliquées de Bordeaux [MAB]
< Leer menos
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
Laboratoire de Mathématiques Appliquées de Bordeaux [MAB]
Idioma
en
Rapport
Este ítem está publicado en
2006p. 11
Resumen en inglés
We review some methods for the numerical approximation of first order Hamilton jacobi equations. Most of the discussion on conformal triangular type meshes but we show how to extend this to the most general meshes. We ...Leer más >
We review some methods for the numerical approximation of first order Hamilton jacobi equations. Most of the discussion on conformal triangular type meshes but we show how to extend this to the most general meshes. We review some first order monotone schemes and also high order ones specially designed for steady problems.< Leer menos
Orígen
Importado de HalCentros de investigación