On the numerical approximation of first order Hamilton Jacobi equations
ABGRALL, Remi
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
Laboratoire de Mathématiques Appliquées de Bordeaux [MAB]
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
Laboratoire de Mathématiques Appliquées de Bordeaux [MAB]
ABGRALL, Remi
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
Laboratoire de Mathématiques Appliquées de Bordeaux [MAB]
< Réduire
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
Laboratoire de Mathématiques Appliquées de Bordeaux [MAB]
Langue
en
Rapport
Ce document a été publié dans
2006p. 11
Résumé en anglais
We review some methods for the numerical approximation of first order Hamilton jacobi equations. Most of the discussion on conformal triangular type meshes but we show how to extend this to the most general meshes. We ...Lire la suite >
We review some methods for the numerical approximation of first order Hamilton jacobi equations. Most of the discussion on conformal triangular type meshes but we show how to extend this to the most general meshes. We review some first order monotone schemes and also high order ones specially designed for steady problems.< Réduire
Origine
Importé de halUnités de recherche