Analysis of hybrid RD-Galerkin schemes for Navier-Stokes simulations
RICCHIUTO, Mario
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
ABGRALL, Rémi
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
Voir plus >
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
RICCHIUTO, Mario
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
ABGRALL, Rémi
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
< Réduire
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
Langue
en
Rapport
Ce document a été publié dans
2010-03-03
Résumé en anglais
We present an extension of multidimensional upwind residual distribution schemes to viscous flows. Following (Ricchiuto et al. , J.Comp.Appl.Math. 2007), we consider the consistent coupling of a residual distribution (RD) ...Lire la suite >
We present an extension of multidimensional upwind residual distribution schemes to viscous flows. Following (Ricchiuto et al. , J.Comp.Appl.Math. 2007), we consider the consistent coupling of a residual distribution (RD) discretization of the advection operator with a Galerkin approximation for the second order derivatives. Consistency is intended in the sense of uniform accuracy with respect to variations of the mesh size or, equivalently, for the advection diffusion equation, of the Peclet number. Starting from the scalar formulation given in (Ricchiuto et al. , J.Comp.Appl.Math. 2007), we perform an accuracy and stability analysis to justify and extend the approach to the time-dependent case. The theoretical predictions are cofirmed by numerical grid convergence studies. The schemes are formally extended to the system of laminar Navier-Stokes equations, and compared to more classical finite volume discretizations on the solution of standard test problems.< Réduire
Mots clés en anglais
numerical analysis
second order schemes
parabolic problems
residual distribution
uniform accuracy
unstructured grids
Origine
Importé de halUnités de recherche