Analysis of hybrid RD-Galerkin schemes for Navier-Stokes simulations
RICCHIUTO, Mario
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
ABGRALL, Rémi
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
See more >
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
RICCHIUTO, Mario
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
ABGRALL, Rémi
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
< Reduce
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
Language
en
Rapport
This item was published in
2010-03-03
English Abstract
We present an extension of multidimensional upwind residual distribution schemes to viscous flows. Following (Ricchiuto et al. , J.Comp.Appl.Math. 2007), we consider the consistent coupling of a residual distribution (RD) ...Read more >
We present an extension of multidimensional upwind residual distribution schemes to viscous flows. Following (Ricchiuto et al. , J.Comp.Appl.Math. 2007), we consider the consistent coupling of a residual distribution (RD) discretization of the advection operator with a Galerkin approximation for the second order derivatives. Consistency is intended in the sense of uniform accuracy with respect to variations of the mesh size or, equivalently, for the advection diffusion equation, of the Peclet number. Starting from the scalar formulation given in (Ricchiuto et al. , J.Comp.Appl.Math. 2007), we perform an accuracy and stability analysis to justify and extend the approach to the time-dependent case. The theoretical predictions are cofirmed by numerical grid convergence studies. The schemes are formally extended to the system of laminar Navier-Stokes equations, and compared to more classical finite volume discretizations on the solution of standard test problems.Read less <
English Keywords
numerical analysis
second order schemes
parabolic problems
residual distribution
uniform accuracy
unstructured grids
Origin
Hal imported