Faster, Cheaper, Better – a Hybridization Methodology to Develop Linear Algebra Software for GPUs
AGULLO, Emmanuel
High-End Parallel Algorithms for Challenging Numerical Simulations [HiePACS]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
High-End Parallel Algorithms for Challenging Numerical Simulations [HiePACS]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
AUGONNET, Cédric
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Efficient runtime systems for parallel architectures [RUNTIME]
Voir plus >
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Efficient runtime systems for parallel architectures [RUNTIME]
AGULLO, Emmanuel
High-End Parallel Algorithms for Challenging Numerical Simulations [HiePACS]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
High-End Parallel Algorithms for Challenging Numerical Simulations [HiePACS]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
AUGONNET, Cédric
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Efficient runtime systems for parallel architectures [RUNTIME]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Efficient runtime systems for parallel architectures [RUNTIME]
NAMYST, Raymond
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Efficient runtime systems for parallel architectures [RUNTIME]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Efficient runtime systems for parallel architectures [RUNTIME]
THIBAULT, Samuel
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Efficient runtime systems for parallel architectures [RUNTIME]
< Réduire
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Efficient runtime systems for parallel architectures [RUNTIME]
Langue
en
Chapitre d'ouvrage
Ce document a été publié dans
GPU Computing Gems, GPU Computing Gems. 2010-09, vol. 2
Morgan Kaufmann
Résumé en anglais
In this chapter, we present a hybridization methodology for the development of linear algebra software for GPUs. The methodology is successfully used in MAGMA – a new generation of linear algebra libraries, similar in ...Lire la suite >
In this chapter, we present a hybridization methodology for the development of linear algebra software for GPUs. The methodology is successfully used in MAGMA – a new generation of linear algebra libraries, similar in functionality to LAPACK, but extended for hybrid, GPU-based systems. Algorithms of interest are split into computational tasks. The tasks' execution is scheduled over the computational components of a hybrid system of multicore CPUs with GPU accelerators using StarPU – a runtime system for accelerator-based multicore architectures. StarPU enables to express parallelism through sequential-like code and schedules the different tasks over the hybrid processing units. The productivity becomes then fast and cheap as the development is high level, using existing software infrastructure. Moreover, the resulting hybrid algorithms are better performance-wise than corresponding homogeneous algorithms designed exclusively for either GPUs or homogeneous multicore CPUs.< Réduire
Projet Européen
Performance Portability and Programmability for Heterogeneous Many-core Architectures
Project ANR
Programmation des technologies multicoeurs hétérogènes - ANR-08-COSI-0013
Origine
Importé de halUnités de recherche