Faster, Cheaper, Better – a Hybridization Methodology to Develop Linear Algebra Software for GPUs
AGULLO, Emmanuel
High-End Parallel Algorithms for Challenging Numerical Simulations [HiePACS]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
High-End Parallel Algorithms for Challenging Numerical Simulations [HiePACS]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
AUGONNET, Cédric
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Efficient runtime systems for parallel architectures [RUNTIME]
Leer más >
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Efficient runtime systems for parallel architectures [RUNTIME]
AGULLO, Emmanuel
High-End Parallel Algorithms for Challenging Numerical Simulations [HiePACS]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
High-End Parallel Algorithms for Challenging Numerical Simulations [HiePACS]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
AUGONNET, Cédric
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Efficient runtime systems for parallel architectures [RUNTIME]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Efficient runtime systems for parallel architectures [RUNTIME]
NAMYST, Raymond
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Efficient runtime systems for parallel architectures [RUNTIME]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Efficient runtime systems for parallel architectures [RUNTIME]
THIBAULT, Samuel
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Efficient runtime systems for parallel architectures [RUNTIME]
< Leer menos
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Efficient runtime systems for parallel architectures [RUNTIME]
Idioma
en
Chapitre d'ouvrage
Este ítem está publicado en
GPU Computing Gems, GPU Computing Gems. 2010-09, vol. 2
Morgan Kaufmann
Resumen en inglés
In this chapter, we present a hybridization methodology for the development of linear algebra software for GPUs. The methodology is successfully used in MAGMA – a new generation of linear algebra libraries, similar in ...Leer más >
In this chapter, we present a hybridization methodology for the development of linear algebra software for GPUs. The methodology is successfully used in MAGMA – a new generation of linear algebra libraries, similar in functionality to LAPACK, but extended for hybrid, GPU-based systems. Algorithms of interest are split into computational tasks. The tasks' execution is scheduled over the computational components of a hybrid system of multicore CPUs with GPU accelerators using StarPU – a runtime system for accelerator-based multicore architectures. StarPU enables to express parallelism through sequential-like code and schedules the different tasks over the hybrid processing units. The productivity becomes then fast and cheap as the development is high level, using existing software infrastructure. Moreover, the resulting hybrid algorithms are better performance-wise than corresponding homogeneous algorithms designed exclusively for either GPUs or homogeneous multicore CPUs.< Leer menos
Proyecto europeo
Performance Portability and Programmability for Heterogeneous Many-core Architectures
Proyecto ANR
Programmation des technologies multicoeurs hétérogènes - ANR-08-COSI-0013
Orígen
Importado de HalCentros de investigación