The system will be going down for regular maintenance. Please save your work and logout.
On approximate distance labels and routing schemes with affine stretch
GAVOILLE, Cyril
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Institut universitaire de France [IUF]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Institut universitaire de France [IUF]
GAVOILLE, Cyril
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Institut universitaire de France [IUF]
< Reduce
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Institut universitaire de France [IUF]
Language
en
Communication dans un congrès
This item was published in
$25^{th}$ International Symposium on Distributed Computing (DISC), $25^{th}$ International Symposium on Distributed Computing (DISC), $25^{th}$ International Symposium on Distributed Computing (DISC), 2011-09, Rome. 2011, vol. 6950, p. 404-415
Springer
English Abstract
For every integral parameter $k > 1$, given an unweighted graph $G$, we construct in polynomial time, for each vertex $u$, a distance label $L(u)$ of size $\tO(n^{2/(2k-1)})$. For any $u,v \in G$, given $L(u),L(v)$ we can ...Read more >
For every integral parameter $k > 1$, given an unweighted graph $G$, we construct in polynomial time, for each vertex $u$, a distance label $L(u)$ of size $\tO(n^{2/(2k-1)})$. For any $u,v \in G$, given $L(u),L(v)$ we can return in time $O(k)$ an \emph{affine} approximation $\dh(u,v)$ on the distance $d(u,v)$ between $u$ and $v$ in $G$ such that $d(u,v) \le \dh(u,v) \le (2k-2)d(u,v) + 1$. Hence we say that our distance label scheme has affine stretch of $(2k-2)d+1$. For $k=2$ our construction is comparable to the $O(n^{5/3})$ size, $2d+1$ affine stretch of the distance oracle of P\v{a}tra\c{s}cu and Roditty (FOCS~'10), it incurs a $o(\log{n})$ storage overhead while providing the benefits of a distance label. % For any $k>1$, given a restriction of $o(n^{1+1/(k-1)})$ on the total size of the data structure, our construction provides distance labels with affine stretch of $(2k-2)d+1$ which is better than the stretch $(2k-1)d$ scheme of Thorup and Zwick (J. ACM~'05). % Our second contribution is a compact routing scheme with poly-logarithmic addresses that provides affine stretch guarantees. With $\tO(n^{3/(3k-2)})$-bit routing tables we obtain affine stretch of $(4k-6)d+1$, for any $k>1$. % Given a restriction of $o(n^{1/(k-1)})$ on the table size, our routing scheme provides affine stretch which is better than the stretch $(4k-5)d$ routing scheme of Thorup and Zwick (SPAA~'01).Read less <
English Keywords
near shortest-path
compact data-structures
labeling schemes
routing schemes
Origin
Hal imported