Assessing the performance of energy-aware mappings
BENOIT, Anne
Laboratoire de l'Informatique du Parallélisme [LIP]
Optimisation des ressources : modèles, algorithmes et ordonnancement [ROMA]
Laboratoire de l'Informatique du Parallélisme [LIP]
Optimisation des ressources : modèles, algorithmes et ordonnancement [ROMA]
RENAUD-GOUD, Paul
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Voir plus >
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
BENOIT, Anne
Laboratoire de l'Informatique du Parallélisme [LIP]
Optimisation des ressources : modèles, algorithmes et ordonnancement [ROMA]
Laboratoire de l'Informatique du Parallélisme [LIP]
Optimisation des ressources : modèles, algorithmes et ordonnancement [ROMA]
RENAUD-GOUD, Paul
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
ROBERT, Yves
Laboratoire de l'Informatique du Parallélisme [LIP]
Optimisation des ressources : modèles, algorithmes et ordonnancement [ROMA]
< Réduire
Laboratoire de l'Informatique du Parallélisme [LIP]
Optimisation des ressources : modèles, algorithmes et ordonnancement [ROMA]
Langue
en
Article de revue
Ce document a été publié dans
Parallel Processing Letters. 2013, vol. 23, n° 2
World Scientific Publishing
Résumé en anglais
We aim at mapping streaming applications that can be modeled by a series-parallel graph onto a 2-dimensional tiled chip multiprocessor (CMP) architecture. The objective of the mapping is to minimize the energy consumption, ...Lire la suite >
We aim at mapping streaming applications that can be modeled by a series-parallel graph onto a 2-dimensional tiled chip multiprocessor (CMP) architecture. The objective of the mapping is to minimize the energy consumption, using dynamic voltage and frequency scaling (DVFS) techniques, while maintaining a given level of performance, reflected by the rate of processing the data streams. This mapping problem turns out to be NP-hard, and several heuristics are proposed. We assess their performance through comprehensive simulations using the StreamIt workflow suite and randomly generated series-parallel graphs, and various CMP grid sizes.< Réduire
Project ANR
Résilience des applications scientifiques sur machines exascales - ANR-10-BLAN-0301
Origine
Importé de halUnités de recherche