Assessing the performance of energy-aware mappings
BENOIT, Anne
Laboratoire de l'Informatique du Parallélisme [LIP]
Optimisation des ressources : modèles, algorithmes et ordonnancement [ROMA]
Laboratoire de l'Informatique du Parallélisme [LIP]
Optimisation des ressources : modèles, algorithmes et ordonnancement [ROMA]
RENAUD-GOUD, Paul
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Leer más >
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
BENOIT, Anne
Laboratoire de l'Informatique du Parallélisme [LIP]
Optimisation des ressources : modèles, algorithmes et ordonnancement [ROMA]
Laboratoire de l'Informatique du Parallélisme [LIP]
Optimisation des ressources : modèles, algorithmes et ordonnancement [ROMA]
RENAUD-GOUD, Paul
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
ROBERT, Yves
Laboratoire de l'Informatique du Parallélisme [LIP]
Optimisation des ressources : modèles, algorithmes et ordonnancement [ROMA]
< Leer menos
Laboratoire de l'Informatique du Parallélisme [LIP]
Optimisation des ressources : modèles, algorithmes et ordonnancement [ROMA]
Idioma
en
Article de revue
Este ítem está publicado en
Parallel Processing Letters. 2013, vol. 23, n° 2
World Scientific Publishing
Resumen en inglés
We aim at mapping streaming applications that can be modeled by a series-parallel graph onto a 2-dimensional tiled chip multiprocessor (CMP) architecture. The objective of the mapping is to minimize the energy consumption, ...Leer más >
We aim at mapping streaming applications that can be modeled by a series-parallel graph onto a 2-dimensional tiled chip multiprocessor (CMP) architecture. The objective of the mapping is to minimize the energy consumption, using dynamic voltage and frequency scaling (DVFS) techniques, while maintaining a given level of performance, reflected by the rate of processing the data streams. This mapping problem turns out to be NP-hard, and several heuristics are proposed. We assess their performance through comprehensive simulations using the StreamIt workflow suite and randomly generated series-parallel graphs, and various CMP grid sizes.< Leer menos
Proyecto ANR
Résilience des applications scientifiques sur machines exascales - ANR-10-BLAN-0301
Orígen
Importado de HalCentros de investigación