The Newton tree: geometric interpretation and applications to the motivic zeta function and the log canonical threshold
Language
en
Document de travail - Pré-publication
English Abstract
Let I be an arbitrary ideal in C[[x,y]]. We use the Newton algorithm to compute by induction the motivic zeta function of the ideal, yielding only few poles, associated to the faces of the successive Newton polygons. We ...Read more >
Let I be an arbitrary ideal in C[[x,y]]. We use the Newton algorithm to compute by induction the motivic zeta function of the ideal, yielding only few poles, associated to the faces of the successive Newton polygons. We associate a minimal Newton tree to I, related to using good coordinates in the Newton algorithm, and show that it has a conceptual geometric interpretation in terms of the log canonical model of I. We also compute the log canonical threshold from a Newton polygon and strengthen Corti's inequalities.Read less <
Origin
Hal imported