Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorCASSOU-NOGUÈS, Pierrette
hal.structure.identifierDepartment of Mathematics
dc.contributor.authorVEYS, Willem
dc.date.accessioned2024-04-04T03:21:29Z
dc.date.available2024-04-04T03:21:29Z
dc.date.created2013-10-30
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194661
dc.description.abstractEnLet I be an arbitrary ideal in C[[x,y]]. We use the Newton algorithm to compute by induction the motivic zeta function of the ideal, yielding only few poles, associated to the faces of the successive Newton polygons. We associate a minimal Newton tree to I, related to using good coordinates in the Newton algorithm, and show that it has a conceptual geometric interpretation in terms of the log canonical model of I. We also compute the log canonical threshold from a Newton polygon and strengthen Corti's inequalities.
dc.language.isoen
dc.title.enThe Newton tree: geometric interpretation and applications to the motivic zeta function and the log canonical threshold
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]/Géométrie algébrique [math.AG]
dc.identifier.arxiv1310.8260
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-01026274
hal.version1
hal.audienceNon spécifiée
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01026274v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=CASSOU-NOGU%C3%88S,%20Pierrette&VEYS,%20Willem&rft.genre=preprint


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée