Exponential Adams Bashforth integrators for stiff ODEs, application to cardiac electrophysiology
COUDIÈRE, Yves
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
DOUANLA LONTSI, Charlie
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
COUDIÈRE, Yves
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
DOUANLA LONTSI, Charlie
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
< Reduce
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Language
en
Article de revue
This item was published in
Mathematics and Computers in Simulation. 2018, vol. 153, p. 15-34
Elsevier
English Abstract
Models in cardiac electrophysiology are coupled systems of reaction diffusion PDE and of ODE. The ODE system displays a very stiff behavior. It is non linear and its upgrade at each time step is a preponderant load in the ...Read more >
Models in cardiac electrophysiology are coupled systems of reaction diffusion PDE and of ODE. The ODE system displays a very stiff behavior. It is non linear and its upgrade at each time step is a preponderant load in the computational cost. The issue is to develop high order explicit and stable methods to cope with this situation.In this article, is is analyzed the resort to exponential Adams Bashforth (EAB) integrators in cardiac electrophysiology. The method is presented in the framework of a general and varying stabilizer, that is well suited in this context. Stability under perturbation (or 0-stability) is proven. It provides a new approach for the convergence analysis of the method. The Dahlquist stability properties of the method is performed. It is presented in a new framework that incorporates the discrepancy between the stabilizer and the system Jacobian matrix. Provided this discrepancy is small enough, the method is shown to be A(alpha)-stable. This result is interesting for an explicit time-stepping method. Numerical experiments are presented for two classes of stiff models in cardiac electrophysiology. They include performances comparisons with several classical methods. The EAB method is observed to be as stable as implicit solvers and cheaper at equal level of accuracy.Read less <
English Keywords
explicit high-order multistep methods
stiff equations
Dahlquist stability
exponential integrators of Adams type
stability and convergence
ANR Project
Modèles numériques haute résolution de l'électrophysiologie cardiaque - ANR-13-MONU-0004
L'Institut de Rythmologie et modélisation Cardiaque - ANR-10-IAHU-0004
L'Institut de Rythmologie et modélisation Cardiaque - ANR-10-IAHU-0004
Origin
Hal imported