Exponential Adams Bashforth integrators for stiff ODEs, application to cardiac electrophysiology
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN] | |
dc.contributor.author | COUDIÈRE, Yves | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN] | |
dc.contributor.author | DOUANLA LONTSI, Charlie | |
hal.structure.identifier | Laboratoire de Mathématiques et de leurs Applications [Pau] [LMAP] | |
dc.contributor.author | PIERRE, Charles | |
dc.date.accessioned | 2024-04-04T03:06:11Z | |
dc.date.available | 2024-04-04T03:06:11Z | |
dc.date.created | 2018-04-16 | |
dc.date.issued | 2018 | |
dc.identifier.issn | 0378-4754 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/193315 | |
dc.description.abstractEn | Models in cardiac electrophysiology are coupled systems of reaction diffusion PDE and of ODE. The ODE system displays a very stiff behavior. It is non linear and its upgrade at each time step is a preponderant load in the computational cost. The issue is to develop high order explicit and stable methods to cope with this situation.In this article, is is analyzed the resort to exponential Adams Bashforth (EAB) integrators in cardiac electrophysiology. The method is presented in the framework of a general and varying stabilizer, that is well suited in this context. Stability under perturbation (or 0-stability) is proven. It provides a new approach for the convergence analysis of the method. The Dahlquist stability properties of the method is performed. It is presented in a new framework that incorporates the discrepancy between the stabilizer and the system Jacobian matrix. Provided this discrepancy is small enough, the method is shown to be A(alpha)-stable. This result is interesting for an explicit time-stepping method. Numerical experiments are presented for two classes of stiff models in cardiac electrophysiology. They include performances comparisons with several classical methods. The EAB method is observed to be as stable as implicit solvers and cheaper at equal level of accuracy. | |
dc.description.sponsorship | Modèles numériques haute résolution de l'électrophysiologie cardiaque - ANR-13-MONU-0004 | |
dc.description.sponsorship | L'Institut de Rythmologie et modélisation Cardiaque - ANR-10-IAHU-0004 | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.subject.en | explicit high-order multistep methods | |
dc.subject.en | stiff equations | |
dc.subject.en | Dahlquist stability | |
dc.subject.en | exponential integrators of Adams type | |
dc.subject.en | stability and convergence | |
dc.title.en | Exponential Adams Bashforth integrators for stiff ODEs, application to cardiac electrophysiology | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1016/j.matcom.2018.04.006 | |
dc.subject.hal | Mathématiques [math]/Analyse numérique [math.NA] | |
dc.identifier.arxiv | 1804.09927 | |
bordeaux.journal | Mathematics and Computers in Simulation | |
bordeaux.page | 15-34 | |
bordeaux.volume | 153 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01394036 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01394036v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Mathematics%20and%20Computers%20in%20Simulation&rft.date=2018&rft.volume=153&rft.spage=15-34&rft.epage=15-34&rft.eissn=0378-4754&rft.issn=0378-4754&rft.au=COUDI%C3%88RE,%20Yves&DOUANLA%20LONTSI,%20Charlie&PIERRE,%20Charles&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |