No singular modulus is a unit
Language
en
Article de revue
This item was published in
International Mathematics Research Notices. 2020 n° 24, p. 10005-10041
Oxford University Press (OUP)
English Abstract
A result of the second-named author states that there are only finitely many CM-elliptic curves over $\mathbb{C}$ whose $j$-invariant is an algebraic unit. His proof depends on Duke's Equidistribution Theorem and is hence ...Read more >
A result of the second-named author states that there are only finitely many CM-elliptic curves over $\mathbb{C}$ whose $j$-invariant is an algebraic unit. His proof depends on Duke's Equidistribution Theorem and is hence non-effective. In this article, we give a completely effective proof of this result. To be precise, we show that every singular modulus that is an algebraic unit is associated with a CM-elliptic curve whose endomorphism ring has discriminant less than $10^{15}$. Through further refinements and computer-assisted computations, we eventually rule out all remaining cases, showing that no singular modulus is an algebraic unit. This allows us to exhibit classes of subvarieties in $\mathbb{C}^n$ not containing any special points.Read less <
Origin
Hal imported