No singular modulus is a unit
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | BILU, Yu. | |
dc.contributor.author | HABEGGER, P. | |
dc.contributor.author | KÜHNE, L. | |
dc.date.accessioned | 2024-04-04T03:04:31Z | |
dc.date.available | 2024-04-04T03:04:31Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 1073-7928 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/193161 | |
dc.description.abstractEn | A result of the second-named author states that there are only finitely many CM-elliptic curves over $\mathbb{C}$ whose $j$-invariant is an algebraic unit. His proof depends on Duke's Equidistribution Theorem and is hence non-effective. In this article, we give a completely effective proof of this result. To be precise, we show that every singular modulus that is an algebraic unit is associated with a CM-elliptic curve whose endomorphism ring has discriminant less than $10^{15}$. Through further refinements and computer-assisted computations, we eventually rule out all remaining cases, showing that no singular modulus is an algebraic unit. This allows us to exhibit classes of subvarieties in $\mathbb{C}^n$ not containing any special points. | |
dc.language.iso | en | |
dc.publisher | Oxford University Press (OUP) | |
dc.title.en | No singular modulus is a unit | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1093/imrn/rny274 | |
dc.subject.hal | Mathématiques [math]/Théorie des nombres [math.NT] | |
dc.identifier.arxiv | 1805.07167 | |
bordeaux.journal | International Mathematics Research Notices | |
bordeaux.page | 10005-10041 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 24 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01914592 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01914592v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=International%20Mathematics%20Research%20Notices&rft.date=2020&rft.issue=24&rft.spage=10005-10041&rft.epage=10005-10041&rft.eissn=1073-7928&rft.issn=1073-7928&rft.au=BILU,%20Yu.&HABEGGER,%20P.&K%C3%9CHNE,%20L.&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |