Counting Feynman-like graphs: Quasimodularity and Siegel-Veech weight
Langue
en
Article de revue
Ce document a été publié dans
Journal of the European Mathematical Society. 2020, vol. 22, n° 2, p. 365–412
European Mathematical Society
Résumé en anglais
We prove the quasimodularity of generating functions for counting torus covers, with and without Siegel-Veech weight. Our proof is based on analyzing decompositions of flat surfaces into horizontal cylinders. The quasimodularity ...Lire la suite >
We prove the quasimodularity of generating functions for counting torus covers, with and without Siegel-Veech weight. Our proof is based on analyzing decompositions of flat surfaces into horizontal cylinders. The quasimodularity arise as contour integral of quasi-elliptic functions. It provides an alternative proof of the quasimodularity results of Bloch-Okounkov, Eskin-Okounkov and Chen-Moeller-Zagier, and generalizes the results of Boehm-Bringmann-Buchholz-Markwig for simple ramification covers.< Réduire
Origine
Importé de halUnités de recherche