Counting Feynman-like graphs: Quasimodularity and Siegel-Veech weight
Idioma
en
Article de revue
Este ítem está publicado en
Journal of the European Mathematical Society. 2020, vol. 22, n° 2, p. 365–412
European Mathematical Society
Resumen en inglés
We prove the quasimodularity of generating functions for counting torus covers, with and without Siegel-Veech weight. Our proof is based on analyzing decompositions of flat surfaces into horizontal cylinders. The quasimodularity ...Leer más >
We prove the quasimodularity of generating functions for counting torus covers, with and without Siegel-Veech weight. Our proof is based on analyzing decompositions of flat surfaces into horizontal cylinders. The quasimodularity arise as contour integral of quasi-elliptic functions. It provides an alternative proof of the quasimodularity results of Bloch-Okounkov, Eskin-Okounkov and Chen-Moeller-Zagier, and generalizes the results of Boehm-Bringmann-Buchholz-Markwig for simple ramification covers.< Leer menos
Orígen
Importado de HalCentros de investigación