Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorGOUJARD, Elise
dc.contributor.authorMOELLER, Martin
dc.date.accessioned2024-04-04T03:04:26Z
dc.date.available2024-04-04T03:04:26Z
dc.date.issued2020
dc.identifier.issn1435-9855
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193152
dc.description.abstractEnWe prove the quasimodularity of generating functions for counting torus covers, with and without Siegel-Veech weight. Our proof is based on analyzing decompositions of flat surfaces into horizontal cylinders. The quasimodularity arise as contour integral of quasi-elliptic functions. It provides an alternative proof of the quasimodularity results of Bloch-Okounkov, Eskin-Okounkov and Chen-Moeller-Zagier, and generalizes the results of Boehm-Bringmann-Buchholz-Markwig for simple ramification covers.
dc.language.isoen
dc.publisherEuropean Mathematical Society
dc.title.enCounting Feynman-like graphs: Quasimodularity and Siegel-Veech weight
dc.typeArticle de revue
dc.identifier.doi10.4171/JEMS/924
dc.subject.halMathématiques [math]/Topologie géométrique [math.GT]
dc.subject.halMathématiques [math]/Théorie des nombres [math.NT]
dc.subject.halMathématiques [math]/Physique mathématique [math-ph]
dc.identifier.arxiv1609.01658
bordeaux.journalJournal of the European Mathematical Society
bordeaux.page365–412
bordeaux.volume22
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue2
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01915037
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01915037v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20the%20European%20Mathematical%20Society&rft.date=2020&rft.volume=22&rft.issue=2&rft.spage=365%E2%80%93412&rft.epage=365%E2%80%93412&rft.eissn=1435-9855&rft.issn=1435-9855&rft.au=GOUJARD,%20Elise&MOELLER,%20Martin&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record