A Virtual Element Method for a Nonlocal FitzHugh-Nagumo Model of Cardiac Electrophysiology
BENDAHMANE, Mostafa
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
See more >
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
BENDAHMANE, Mostafa
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
SEPULVEDA, Mauricio
Departamento de Ingeniería Matemática [Santiago] [DIM]
Universidad del Bio Bio [Concepción] [UBB]
< Reduce
Departamento de Ingeniería Matemática [Santiago] [DIM]
Universidad del Bio Bio [Concepción] [UBB]
Language
en
Article de revue
This item was published in
IMA Journal of Numerical Analysis. 2019
Oxford University Press (OUP)
Date
2019English Abstract
We present a virtual element method (VEM) for a nonlocal reaction–diffusion system of the cardiac electric field. For this system, we analyze an H1-conforming discretization by means of VEM that can make use ...Read more >
We present a virtual element method (VEM) for a nonlocal reaction–diffusion system of the cardiac electric field. For this system, we analyze an H1-conforming discretization by means of VEM that can make use of general polygonal meshes. Under standard assumptions on the computational domain, we establish the convergence of the discrete solution by considering a series of a priori estimates and by using a general Lp compactness criterion. Moreover, we obtain optimal order space-time error estimates in the L2 norm. Finally, we report some numerical tests supporting the theoretical results.Read less <
English Keywords
Error estimates
Convergence
FitzHugh–Nagumo equations
Virtual element method
Origin
Hal imported