A Virtual Element Method for a Nonlocal FitzHugh-Nagumo Model of Cardiac Electrophysiology
BENDAHMANE, Mostafa
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
Leer más >
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
BENDAHMANE, Mostafa
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
SEPULVEDA, Mauricio
Departamento de Ingeniería Matemática [Santiago] [DIM]
Universidad del Bio Bio [Concepción] [UBB]
< Leer menos
Departamento de Ingeniería Matemática [Santiago] [DIM]
Universidad del Bio Bio [Concepción] [UBB]
Idioma
en
Article de revue
Este ítem está publicado en
IMA Journal of Numerical Analysis. 2019
Oxford University Press (OUP)
Fecha de defensa
2019Resumen en inglés
We present a virtual element method (VEM) for a nonlocal reaction–diffusion system of the cardiac electric field. For this system, we analyze an H1-conforming discretization by means of VEM that can make use ...Leer más >
We present a virtual element method (VEM) for a nonlocal reaction–diffusion system of the cardiac electric field. For this system, we analyze an H1-conforming discretization by means of VEM that can make use of general polygonal meshes. Under standard assumptions on the computational domain, we establish the convergence of the discrete solution by considering a series of a priori estimates and by using a general Lp compactness criterion. Moreover, we obtain optimal order space-time error estimates in the L2 norm. Finally, we report some numerical tests supporting the theoretical results.< Leer menos
Palabras clave en inglés
Error estimates
Convergence
FitzHugh–Nagumo equations
Virtual element method
Orígen
Importado de HalCentros de investigación