VORONOI COMPLEXES IN HIGHER DIMENSIONS, COHOMOLOGY OF $GL_N (Z)$ FOR $N\ge 8$ AND THE TRIVIALITY OF $K_8 (Z)$
Language
en
Document de travail - Pré-publication
English Abstract
We enumerate the low dimensional cells in the Voronoi cell complexes attached to the modular groups $SL_N (Z)$ and $GL_N (Z)$ for $N = 8, 9, 10, 11$, using quotient sublattices techniques for $N = 8, 9$ and linear programming ...Read more >
We enumerate the low dimensional cells in the Voronoi cell complexes attached to the modular groups $SL_N (Z)$ and $GL_N (Z)$ for $N = 8, 9, 10, 11$, using quotient sublattices techniques for $N = 8, 9$ and linear programming methods for higher dimensions. These enumerations allow us to compute some cohomology of these groups and prove that $K_8 (Z) = 0$, providing new knowledge on the Kummer-Vandiver conjecture.Read less <
English Keywords
modular groups
group cohomology
Voronoi complex
Perfect forms
K-theory of integers
well-rounded lattices
Steinberg modules
linear programming
arithmetic groups
Kummer-Vandiver conjecture
ANR Project
IDEX UGA - ANR-15-IDEX-0002
Origin
Hal imported