VORONOI COMPLEXES IN HIGHER DIMENSIONS, COHOMOLOGY OF $GL_N (Z)$ FOR $N\ge 8$ AND THE TRIVIALITY OF $K_8 (Z)$
Langue
en
Document de travail - Pré-publication
Résumé en anglais
We enumerate the low dimensional cells in the Voronoi cell complexes attached to the modular groups $SL_N (Z)$ and $GL_N (Z)$ for $N = 8, 9, 10, 11$, using quotient sublattices techniques for $N = 8, 9$ and linear programming ...Lire la suite >
We enumerate the low dimensional cells in the Voronoi cell complexes attached to the modular groups $SL_N (Z)$ and $GL_N (Z)$ for $N = 8, 9, 10, 11$, using quotient sublattices techniques for $N = 8, 9$ and linear programming methods for higher dimensions. These enumerations allow us to compute some cohomology of these groups and prove that $K_8 (Z) = 0$, providing new knowledge on the Kummer-Vandiver conjecture.< Réduire
Mots clés en anglais
modular groups
group cohomology
Voronoi complex
Perfect forms
K-theory of integers
well-rounded lattices
Steinberg modules
linear programming
arithmetic groups
Kummer-Vandiver conjecture
Project ANR
IDEX UGA - ANR-15-IDEX-0002
Origine
Importé de halUnités de recherche