Prediction of Clinical Deep Brain Stimulation Target for Essential Tremor From 1.5 Tesla MRI Anatomical Landmarks
ENGELHARDT, Julien
Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
Institut des Maladies Neurodégénératives [Bordeaux] [IMN]
Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
Institut des Maladies Neurodégénératives [Bordeaux] [IMN]
CUNY, Emmanuel
Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
Institut des Maladies Neurodégénératives [Bordeaux] [IMN]
Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
Institut des Maladies Neurodégénératives [Bordeaux] [IMN]
GUEHL, Dominique
Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
Institut des Maladies Neurodégénératives [Bordeaux] [IMN]
See more >
Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
Institut des Maladies Neurodégénératives [Bordeaux] [IMN]
ENGELHARDT, Julien
Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
Institut des Maladies Neurodégénératives [Bordeaux] [IMN]
Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
Institut des Maladies Neurodégénératives [Bordeaux] [IMN]
CUNY, Emmanuel
Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
Institut des Maladies Neurodégénératives [Bordeaux] [IMN]
Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
Institut des Maladies Neurodégénératives [Bordeaux] [IMN]
GUEHL, Dominique
Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
Institut des Maladies Neurodégénératives [Bordeaux] [IMN]
Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
Institut des Maladies Neurodégénératives [Bordeaux] [IMN]
BURBAUD, Pierre
Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
Institut des Maladies Neurodégénératives [Bordeaux] [IMN]
Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
Institut des Maladies Neurodégénératives [Bordeaux] [IMN]
DAMON-PERRIÈRE, Nathalie
Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
Institut des Maladies Neurodégénératives [Bordeaux] [IMN]
Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
Institut des Maladies Neurodégénératives [Bordeaux] [IMN]
DALLIES-LABOURDETTE, Camille
Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
Institut des Maladies Neurodégénératives [Bordeaux] [IMN]
Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
Institut des Maladies Neurodégénératives [Bordeaux] [IMN]
THOMAS, Juliette
Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
Institut des Maladies Neurodégénératives [Bordeaux] [IMN]
Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
Institut des Maladies Neurodégénératives [Bordeaux] [IMN]
GASSA, Narimane
Université de Bordeaux [UB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Université de Bordeaux [UB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
ZEMZEMI, Nejib
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
< Reduce
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
Language
en
Article de revue
This item was published in
Frontiers in Neurology. 2021-10-27, vol. 12
Frontiers
English Abstract
Background: Deep brain stimulation is an efficacious treatment for refractory essential tremor, though targeting the intra-thalamic nuclei remains challenging. Objectives: We sought to develop an inverse approach to retrieve ...Read more >
Background: Deep brain stimulation is an efficacious treatment for refractory essential tremor, though targeting the intra-thalamic nuclei remains challenging. Objectives: We sought to develop an inverse approach to retrieve the position of the leads in a cohort of patients operated on with optimal clinical outcomes from anatomical landmarks identifiable by 1.5 Tesla magnetic resonance imaging. Methods: The learning database included clinical outcomes and post-operative imaging from which the coordinates of the active contacts and those of anatomical landmarks were extracted. We used machine learning regression methods to build three different prediction models. External validation was performed according to a leave-one-out cross-validation. Results: Fifteen patients (29 leads) were included, with a median tremor improvement of 72% on the Fahn-Tolosa-Marin scale. Kernel ridge regression, deep neural networks, and support vector regression (SVR) were used. SVR gave the best results with a mean error of 1.33 ± 1.64 mm between the predicted target and the active contact position. Conclusion: We report an original method for the targeting in deep brain stimulation for essential tremor based on patients' radio-anatomical features. This approach will be tested in a prospective clinical trial.Read less <
English Keywords
Essential tremor
Vim nucleus
Deep brain stimulation (DBS) surgery
Brain surgery
Neurosurgery
Machine learning
Neural network applications
Origin
Hal imported