A mathematical model of HIV-1 infection including the saturation effect of healthy cell proliferation
AINSEBA, Bedr'Eddine
Institut de Mathématiques de Bordeaux [IMB]
Tools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS]
Institut de Mathématiques de Bordeaux [IMB]
Tools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS]
KOUCHE, Mahieddine
Laboratoire International de Recherche en Informatique et Mathématiques Appliquées [LIRIMA]
Laboratoire International de Recherche en Informatique et Mathématiques Appliquées [LIRIMA]
AINSEBA, Bedr'Eddine
Institut de Mathématiques de Bordeaux [IMB]
Tools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS]
Institut de Mathématiques de Bordeaux [IMB]
Tools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS]
KOUCHE, Mahieddine
Laboratoire International de Recherche en Informatique et Mathématiques Appliquées [LIRIMA]
< Reduce
Laboratoire International de Recherche en Informatique et Mathématiques Appliquées [LIRIMA]
Language
en
Article de revue
This item was published in
International Journal of Applied Mathematics and Computer Science. 2010, vol. 20, n° 3, p. 601-612
University of Zielona Góra
English Abstract
In this paper we derive a model describing the dynamics of HIV-1 infection in tissue culture where the infection spreads directly from infected cells to healthy cells trough cell-to-cell contact. We assume that the infection ...Read more >
In this paper we derive a model describing the dynamics of HIV-1 infection in tissue culture where the infection spreads directly from infected cells to healthy cells trough cell-to-cell contact. We assume that the infection rate between healthy and infected cells is a saturating function of cell concentration. Our analysis shows that if the basic reproduction number does not exceed unity then infected cells are cleared and the disease dies out. Otherwise, the infection is persistent with the existence of an infected equilibrium. Numerical simulations indicate that, depending on the fraction of cells surviving the incubation period, the solutions approach either an infected steady state or a periodic orbit.Read less <
Origin
Hal imported