A mathematical model of HIV-1 infection including the saturation effect of healthy cell proliferation
AINSEBA, Bedr'Eddine
Institut de Mathématiques de Bordeaux [IMB]
Tools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS]
Institut de Mathématiques de Bordeaux [IMB]
Tools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS]
KOUCHE, Mahieddine
Laboratoire International de Recherche en Informatique et Mathématiques Appliquées [LIRIMA]
Laboratoire International de Recherche en Informatique et Mathématiques Appliquées [LIRIMA]
AINSEBA, Bedr'Eddine
Institut de Mathématiques de Bordeaux [IMB]
Tools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS]
Institut de Mathématiques de Bordeaux [IMB]
Tools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS]
KOUCHE, Mahieddine
Laboratoire International de Recherche en Informatique et Mathématiques Appliquées [LIRIMA]
< Réduire
Laboratoire International de Recherche en Informatique et Mathématiques Appliquées [LIRIMA]
Langue
en
Article de revue
Ce document a été publié dans
International Journal of Applied Mathematics and Computer Science. 2010, vol. 20, n° 3, p. 601-612
University of Zielona Góra
Résumé en anglais
In this paper we derive a model describing the dynamics of HIV-1 infection in tissue culture where the infection spreads directly from infected cells to healthy cells trough cell-to-cell contact. We assume that the infection ...Lire la suite >
In this paper we derive a model describing the dynamics of HIV-1 infection in tissue culture where the infection spreads directly from infected cells to healthy cells trough cell-to-cell contact. We assume that the infection rate between healthy and infected cells is a saturating function of cell concentration. Our analysis shows that if the basic reproduction number does not exceed unity then infected cells are cleared and the disease dies out. Otherwise, the infection is persistent with the existence of an infected equilibrium. Numerical simulations indicate that, depending on the fraction of cells surviving the incubation period, the solutions approach either an infected steady state or a periodic orbit.< Réduire
Origine
Importé de halUnités de recherche