Adaptive time discretization and linearization based on a posteriori estimates for the Richards equation
BARON, Vincent
Bureau de Recherches Géologiques et Minières [BRGM]
Laboratoire de Mathématiques Jean Leray [LMJL]
Bureau de Recherches Géologiques et Minières [BRGM]
Laboratoire de Mathématiques Jean Leray [LMJL]
COUDIÈRE, Yves
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
BARON, Vincent
Bureau de Recherches Géologiques et Minières [BRGM]
Laboratoire de Mathématiques Jean Leray [LMJL]
Bureau de Recherches Géologiques et Minières [BRGM]
Laboratoire de Mathématiques Jean Leray [LMJL]
COUDIÈRE, Yves
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
< Reduce
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
Language
en
Ouvrage
This item was published in
2014-06p. 8 p.
Springer
English Abstract
We derive some a posteriori error estimates for the Richards equation, based on the dual norm of the residual. This equation is nonlinear in space and in time, thus its resolution requires fixed-point iterations within ...Read more >
We derive some a posteriori error estimates for the Richards equation, based on the dual norm of the residual. This equation is nonlinear in space and in time, thus its resolution requires fixed-point iterations within each time step. We propose a strategy to decrease the computational cost relying on a splitting of the error terms in three parts: linearization, time discretization, and space discretization. In practice, we stop the fixed-point iterations after the linearization error becomes negligible, and choose the time step in order to balance the time and space errors.Read less <
Italian Keywords
A posteriori estimate
Richards equation
Discrete Duality Finite Volume scheme
adaptive algorithm
ANR Project
Centre de Mathématiques Henri Lebesgue : fondements, interactions, applications et Formation - ANR-11-LABX-0020
Origin
Hal imported