Optimal Trajectories for Underwater Vehicles by Quantization and Stochastic control
ZHANG, Huilong
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
DE SAPORTA, Benoîte
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Groupe de Recherche en Economie Théorique et Appliquée [GREThA]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Groupe de Recherche en Economie Théorique et Appliquée [GREThA]
DUFOUR, François
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Voir plus >
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
ZHANG, Huilong
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
DE SAPORTA, Benoîte
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Groupe de Recherche en Economie Théorique et Appliquée [GREThA]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Groupe de Recherche en Economie Théorique et Appliquée [GREThA]
DUFOUR, François
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Langue
en
Communication dans un congrès
Ce document a été publié dans
17th International Conference on Information Fusion, 17th International Conference on Information Fusion, Fusion 2014, 2014-07-07, Salamanca. 2014-07-10p. 8
Résumé en anglais
We present in this paper a numerical method which computes the trajectory of a vehicle subject to some mission objectives. The method is applied to a submarine whose goal is to best detect one or several targets (we consider ...Lire la suite >
We present in this paper a numerical method which computes the trajectory of a vehicle subject to some mission objectives. The method is applied to a submarine whose goal is to best detect one or several targets (we consider signal attenuation due to acoustic propagation) or/and to minimize its own detection range perceived by the other targets. Our approach is based on dynamic programming of a finite horizon Markov decision process. The position and the velocity of the targets are supposed to be known only up to a random estimation error, as a Kalman type filter is used to estimate these quantities from the measurements given by the on board sonar. A quantization method is applied to fully discretize the problem and solve it numerically.< Réduire
Mots clés en anglais
Non linear filtering
Quantization
Markov decision processes
Dynamic programming
Underwater acoustic warfare
Origine
Importé de halUnités de recherche