Untitled
BOCHI, Jairo
Pontifícia Universidade Católica do Rio de Janeiro [Brasil] = Pontifical Catholic University of Rio de Janeiro [Brazil] = Université catholique pontificale de Rio de Janeiro [Brésil] [PUC-Rio]
Pontifícia Universidade Católica do Rio de Janeiro [Brasil] = Pontifical Catholic University of Rio de Janeiro [Brazil] = Université catholique pontificale de Rio de Janeiro [Brésil] [PUC-Rio]
GOURMELON, Nicolas
Institut de Mathématiques de Bourgogne [Dijon] [IMB]
Institut de Mathématiques de Bordeaux [IMB]
Instituto Nacional de Matemática Pura e Aplicada [IMPA]
Institut de Mathématiques de Bourgogne [Dijon] [IMB]
Institut de Mathématiques de Bordeaux [IMB]
Instituto Nacional de Matemática Pura e Aplicada [IMPA]
BOCHI, Jairo
Pontifícia Universidade Católica do Rio de Janeiro [Brasil] = Pontifical Catholic University of Rio de Janeiro [Brazil] = Université catholique pontificale de Rio de Janeiro [Brésil] [PUC-Rio]
Pontifícia Universidade Católica do Rio de Janeiro [Brasil] = Pontifical Catholic University of Rio de Janeiro [Brazil] = Université catholique pontificale de Rio de Janeiro [Brésil] [PUC-Rio]
GOURMELON, Nicolas
Institut de Mathématiques de Bourgogne [Dijon] [IMB]
Institut de Mathématiques de Bordeaux [IMB]
Instituto Nacional de Matemática Pura e Aplicada [IMPA]
< Reduce
Institut de Mathématiques de Bourgogne [Dijon] [IMB]
Institut de Mathématiques de Bordeaux [IMB]
Instituto Nacional de Matemática Pura e Aplicada [IMPA]
Language
en
Article de revue
This item was published in
Mathematics of Control, Signals, and Systems. 2014-03-01p. 1
Springer Verlag
English Abstract
We consider discrete-time projective semilinear control systems $\xi_{t+1} = A(u_t) \cdot \xi_t$, where the states $\xi_t$ are in projective space $\RP^{d-1}$, inputs $u_t$ are in a manifold $\cU$ of arbitrary dimension, ...Read more >
We consider discrete-time projective semilinear control systems $\xi_{t+1} = A(u_t) \cdot \xi_t$, where the states $\xi_t$ are in projective space $\RP^{d-1}$, inputs $u_t$ are in a manifold $\cU$ of arbitrary dimension, and $A \colon \cU \to \GL(d,\R)$ is a differentiable mapping. An input sequence $(u_0,\ldots,u_{N-1})$ is called universally regular if for any initial state $\xi_0 \in \RP^{d-1}$, the derivative of the time-$N$ state with respect to the inputs is onto. In this paper we deal with the universal regularity of constant input sequences $(u_0, \dots, u_0)$. Our main result states that for generic such control systems, all constant inputs of sufficient length $N$ are universally regular, except for a discrete set. More precisely, the conclusion holds for a $C^2$-open and $C^\infty$-dense set of maps $A$. We also show that the inputs on that discrete set are nearly universally regular; indeed there is a unique non-regular initial state, and its corank is $1$. In order to establish the result, we study the spaces of bilinear control systems. We show that the codimension of the set of systems for which the zero input is not universally regular coincides with the dimension of the control space. The proof is based on careful matrix analysis and some elementary algebraic geometry. Then the main result follows by applying standard transversality theorems.Read less <
English Keywords
linear cocycles
semilinear control system
universal nonsingular control
European Project
dynamical complex systems
Origin
Hal imported