Sin título
BOCHI, Jairo
Pontifícia Universidade Católica do Rio de Janeiro [Brasil] = Pontifical Catholic University of Rio de Janeiro [Brazil] = Université catholique pontificale de Rio de Janeiro [Brésil] [PUC-Rio]
Pontifícia Universidade Católica do Rio de Janeiro [Brasil] = Pontifical Catholic University of Rio de Janeiro [Brazil] = Université catholique pontificale de Rio de Janeiro [Brésil] [PUC-Rio]
GOURMELON, Nicolas
Institut de Mathématiques de Bourgogne [Dijon] [IMB]
Institut de Mathématiques de Bordeaux [IMB]
Instituto Nacional de Matemática Pura e Aplicada [IMPA]
Institut de Mathématiques de Bourgogne [Dijon] [IMB]
Institut de Mathématiques de Bordeaux [IMB]
Instituto Nacional de Matemática Pura e Aplicada [IMPA]
BOCHI, Jairo
Pontifícia Universidade Católica do Rio de Janeiro [Brasil] = Pontifical Catholic University of Rio de Janeiro [Brazil] = Université catholique pontificale de Rio de Janeiro [Brésil] [PUC-Rio]
Pontifícia Universidade Católica do Rio de Janeiro [Brasil] = Pontifical Catholic University of Rio de Janeiro [Brazil] = Université catholique pontificale de Rio de Janeiro [Brésil] [PUC-Rio]
GOURMELON, Nicolas
Institut de Mathématiques de Bourgogne [Dijon] [IMB]
Institut de Mathématiques de Bordeaux [IMB]
Instituto Nacional de Matemática Pura e Aplicada [IMPA]
< Leer menos
Institut de Mathématiques de Bourgogne [Dijon] [IMB]
Institut de Mathématiques de Bordeaux [IMB]
Instituto Nacional de Matemática Pura e Aplicada [IMPA]
Idioma
en
Article de revue
Este ítem está publicado en
Mathematics of Control, Signals, and Systems. 2014-03-01p. 1
Springer Verlag
Resumen en inglés
We consider discrete-time projective semilinear control systems $\xi_{t+1} = A(u_t) \cdot \xi_t$, where the states $\xi_t$ are in projective space $\RP^{d-1}$, inputs $u_t$ are in a manifold $\cU$ of arbitrary dimension, ...Leer más >
We consider discrete-time projective semilinear control systems $\xi_{t+1} = A(u_t) \cdot \xi_t$, where the states $\xi_t$ are in projective space $\RP^{d-1}$, inputs $u_t$ are in a manifold $\cU$ of arbitrary dimension, and $A \colon \cU \to \GL(d,\R)$ is a differentiable mapping. An input sequence $(u_0,\ldots,u_{N-1})$ is called universally regular if for any initial state $\xi_0 \in \RP^{d-1}$, the derivative of the time-$N$ state with respect to the inputs is onto. In this paper we deal with the universal regularity of constant input sequences $(u_0, \dots, u_0)$. Our main result states that for generic such control systems, all constant inputs of sufficient length $N$ are universally regular, except for a discrete set. More precisely, the conclusion holds for a $C^2$-open and $C^\infty$-dense set of maps $A$. We also show that the inputs on that discrete set are nearly universally regular; indeed there is a unique non-regular initial state, and its corank is $1$. In order to establish the result, we study the spaces of bilinear control systems. We show that the codimension of the set of systems for which the zero input is not universally regular coincides with the dimension of the control space. The proof is based on careful matrix analysis and some elementary algebraic geometry. Then the main result follows by applying standard transversality theorems.< Leer menos
Palabras clave en inglés
linear cocycles
semilinear control system
universal nonsingular control
Proyecto europeo
dynamical complex systems
Orígen
Importado de HalCentros de investigación