Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility.
ROORYCK, Caroline
Service de génétique médicale
Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
Laboratoire Maladies Rares: Génétique et Métabolisme (Bordeaux) [U1211 INSERM/MRGM]
< Réduire
Service de génétique médicale
Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
Laboratoire Maladies Rares: Génétique et Métabolisme (Bordeaux) [U1211 INSERM/MRGM]
Langue
EN
Article de revue
Ce document a été publié dans
Nature Genetics. vol. 54, n° 3, p. 232-239
Résumé en anglais
Brugada syndrome (BrS) is a cardiac arrhythmia disorder associated with sudden death in young adults. With the exception of SCN5A, encoding the cardiac sodium channel Na1.5, susceptibility genes remain largely unknown. ...Lire la suite >
Brugada syndrome (BrS) is a cardiac arrhythmia disorder associated with sudden death in young adults. With the exception of SCN5A, encoding the cardiac sodium channel Na1.5, susceptibility genes remain largely unknown. Here we performed a genome-wide association meta-analysis comprising 2,820 unrelated cases with BrS and 10,001 controls, and identified 21 association signals at 12 loci (10 new). Single nucleotide polymorphism (SNP)-heritability estimates indicate a strong polygenic influence. Polygenic risk score analyses based on the 21 susceptibility variants demonstrate varying cumulative contribution of common risk alleles among different patient subgroups, as well as genetic associations with cardiac electrical traits and disorders in the general population. The predominance of cardiac transcription factor loci indicates that transcriptional regulation is a key feature of BrS pathogenesis. Furthermore, functional studies conducted on MAPRE2, encoding the microtubule plus-end binding protein EB2, point to microtubule-related trafficking effects on Na1.5 expression as a new underlying molecular mechanism. Taken together, these findings broaden our understanding of the genetic architecture of BrS and provide new insights into its molecular underpinnings.< Réduire
Mots clés en anglais
Alleles
Brugada Syndrome
Disease Susceptibility
Genetic Predisposition to Disease
Genome-Wide Association Study
Humans
Microtubule-Associated Proteins
Mutation
NAV1.5 Voltage-Gated Sodium Channel
Young Adult
Unités de recherche