Three-dimensional model for light-induced chaotic rotations in liquid crystals under spin and orbital angular momentum transfer processes.
PICCIRILLO, Bruno
Dipartimento di Scienze Fisishe
Consorzio Nazionale Interuniversitario per la Struttura della Materia [CNISM]
Dipartimento di Scienze Fisishe
Consorzio Nazionale Interuniversitario per la Struttura della Materia [CNISM]
SANTAMATO, Enrico
Dipartimento di Scienze Fisishe
Consorzio Nazionale Interuniversitario per la Struttura della Materia [CNISM]
Dipartimento di Scienze Fisishe
Consorzio Nazionale Interuniversitario per la Struttura della Materia [CNISM]
PICCIRILLO, Bruno
Dipartimento di Scienze Fisishe
Consorzio Nazionale Interuniversitario per la Struttura della Materia [CNISM]
Dipartimento di Scienze Fisishe
Consorzio Nazionale Interuniversitario per la Struttura della Materia [CNISM]
SANTAMATO, Enrico
Dipartimento di Scienze Fisishe
Consorzio Nazionale Interuniversitario per la Struttura della Materia [CNISM]
< Reduce
Dipartimento di Scienze Fisishe
Consorzio Nazionale Interuniversitario per la Struttura della Materia [CNISM]
Language
en
Article de revue
This item was published in
Physical Review E : Statistical, Nonlinear, and Soft Matter Physics. 2008-09, vol. 78, n° 3 Pt 1, p. 031703 (1-4)
American Physical Society
English Abstract
Liquid crystals interacting with light represent a unique class of soft-matter systems that exhibit various generic nonlinear behaviors, including chaotic rotational dynamics. Despite several experimental observations, ...Read more >
Liquid crystals interacting with light represent a unique class of soft-matter systems that exhibit various generic nonlinear behaviors, including chaotic rotational dynamics. Despite several experimental observations, complex nematic liquid crystal director rotations in presence of spin and orbital angular momentum transfer processes were left unexplained. We present a self-consistent three-dimensional model able to describe the previous experimental observations, accounting for the dependence on the incident beam intensity, polarization, finite size and shape. More generally, our model is able to describe quantitatively the dynamics of, and beyond, the optical Fréedericksz transition under realistic experimental conditions almost three decades after its experimental discovery.Read less <
English Keywords
42.70.Df
05.45. a
42.65.Sf
Liquid crystals
Nonlinear dynamics and chaos
Dynamics of nonlinear optical systems
Origin
Hal imported