Three-dimensional model for light-induced chaotic rotations in liquid crystals under spin and orbital angular momentum transfer processes.
PICCIRILLO, Bruno
Dipartimento di Scienze Fisishe
Consorzio Nazionale Interuniversitario per la Struttura della Materia [CNISM]
Dipartimento di Scienze Fisishe
Consorzio Nazionale Interuniversitario per la Struttura della Materia [CNISM]
SANTAMATO, Enrico
Dipartimento di Scienze Fisishe
Consorzio Nazionale Interuniversitario per la Struttura della Materia [CNISM]
Dipartimento di Scienze Fisishe
Consorzio Nazionale Interuniversitario per la Struttura della Materia [CNISM]
PICCIRILLO, Bruno
Dipartimento di Scienze Fisishe
Consorzio Nazionale Interuniversitario per la Struttura della Materia [CNISM]
Dipartimento di Scienze Fisishe
Consorzio Nazionale Interuniversitario per la Struttura della Materia [CNISM]
SANTAMATO, Enrico
Dipartimento di Scienze Fisishe
Consorzio Nazionale Interuniversitario per la Struttura della Materia [CNISM]
< Réduire
Dipartimento di Scienze Fisishe
Consorzio Nazionale Interuniversitario per la Struttura della Materia [CNISM]
Langue
en
Article de revue
Ce document a été publié dans
Physical Review E : Statistical, Nonlinear, and Soft Matter Physics. 2008-09, vol. 78, n° 3 Pt 1, p. 031703 (1-4)
American Physical Society
Résumé en anglais
Liquid crystals interacting with light represent a unique class of soft-matter systems that exhibit various generic nonlinear behaviors, including chaotic rotational dynamics. Despite several experimental observations, ...Lire la suite >
Liquid crystals interacting with light represent a unique class of soft-matter systems that exhibit various generic nonlinear behaviors, including chaotic rotational dynamics. Despite several experimental observations, complex nematic liquid crystal director rotations in presence of spin and orbital angular momentum transfer processes were left unexplained. We present a self-consistent three-dimensional model able to describe the previous experimental observations, accounting for the dependence on the incident beam intensity, polarization, finite size and shape. More generally, our model is able to describe quantitatively the dynamics of, and beyond, the optical Fréedericksz transition under realistic experimental conditions almost three decades after its experimental discovery.< Réduire
Mots clés en anglais
42.70.Df
05.45. a
42.65.Sf
Liquid crystals
Nonlinear dynamics and chaos
Dynamics of nonlinear optical systems
Origine
Importé de halUnités de recherche